Iaia Cosimo, Tavano Alessandro
Department of Psychology, Johann Wolfgang Goethe-Universität Frankfurt am Main, Theodor-W.-Adorno-Platz 6, Frankfurt am Main, 60623, Germany.
CoBIC, Cooperative Brain Imaging Center, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
Behav Res Methods. 2025 Aug 7;57(9):249. doi: 10.3758/s13428-025-02747-7.
To investigate how the human brain encodes the complex dynamics of natural languages, any viable and reproducible analysis pipeline must rely on either manual annotations or natural language processing (NLP) tools, which extract relevant physical (e.g., acoustic, gestural), and structure-building information from speech and language signals. However, annotating syntactic structure for a given natural language is arguably a harder task than annotating the onset and offset of speech units such as phonemes and syllables, as the latter can be identified by relying on the physically overt and temporally measurable properties of the signal, while syntactic units are generally covert and their chunking is model-driven. We describe and validate a pipeline that takes into account both physical and theoretical aspects of speech and language signals, and operates a theory-driven and explicit alignment between overt speech units and covert syntactic units.
为了研究人类大脑如何编码自然语言的复杂动态,任何可行且可重复的分析流程都必须依赖手动标注或自然语言处理(NLP)工具,这些工具从语音和语言信号中提取相关的物理(如声学、手势)和结构构建信息。然而,为给定的自然语言标注句法结构可以说是比标注语音单元(如音素和音节)的起始和偏移更困难的任务,因为后者可以通过依赖信号的物理明显且时间上可测量的属性来识别,而句法单元通常是隐蔽的,并且它们的分块是由模型驱动的。我们描述并验证了一个流程,该流程兼顾了语音和语言信号的物理和理论方面,并在明显的语音单元和隐蔽的句法单元之间进行理论驱动的明确对齐。