Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
Sci Data. 2022 Jun 8;9(1):278. doi: 10.1038/s41597-022-01382-7.
Recently, cognitive neuroscientists have increasingly studied the brain responses to narratives. At the same time, we are witnessing exciting developments in natural language processing where large-scale neural network models can be used to instantiate cognitive hypotheses in narrative processing. Yet, they learn from text alone and we lack ways of incorporating biological constraints during training. To mitigate this gap, we provide a narrative comprehension magnetoencephalography (MEG) data resource that can be used to train neural network models directly on brain data. We recorded from 3 participants, 10 separate recording hour-long sessions each, while they listened to audiobooks in English. After story listening, participants answered short questions about their experience. To minimize head movement, the participants wore MEG-compatible head casts, which immobilized their head position during recording. We report a basic evoked-response analysis showing that the responses accurately localize to primary auditory areas. The responses are robust and conserved across 10 sessions for every participant. We also provide usage notes and briefly outline possible future uses of the resource.
最近,认知神经科学家越来越多地研究大脑对叙事的反应。与此同时,我们也见证了自然语言处理领域的令人兴奋的发展,其中大规模神经网络模型可用于实例化叙事处理中的认知假设。然而,它们仅从文本中学习,并且我们缺乏在训练过程中纳入生物约束的方法。为了缓解这一差距,我们提供了一个叙事理解脑磁图(MEG)数据资源,可用于直接在脑数据上训练神经网络模型。我们对 3 名参与者进行了记录,每个参与者进行了 10 个单独的、时长为 1 小时的录音会话,同时他们听英语有声读物。听完故事后,参与者回答了一些关于他们体验的简短问题。为了最大限度地减少头部运动,参与者佩戴了兼容 MEG 的头罩,在记录过程中固定头部位置。我们报告了一项基本的诱发反应分析,结果表明反应准确地定位于主要听觉区域。对于每个参与者,这些反应在 10 个会话中都是稳健且一致的。我们还提供了使用说明,并简要概述了该资源的可能未来用途。