文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

血浆中神经元衍生的细胞外囊泡是一种潜在的非侵入性生物标志物,可用于评估亨廷顿舞蹈病中的亨廷顿蛋白和RNA。

Neuron-derived extracellular vesicles in plasma present a potential non-invasive biomarker for Huntingtin protein and RNA assessment in Huntington disease.

作者信息

Brás Inês Caldeira, Xie Yuanyun, Southwell Amber Lee

出版信息

bioRxiv. 2025 Jul 21:2025.07.17.665403. doi: 10.1101/2025.07.17.665403.


DOI:10.1101/2025.07.17.665403
PMID:40777434
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12330537/
Abstract

Huntington disease (HD) is a neurodegenerative disease caused by a trinucleotide repeat expansion in the HTT gene encoding an elongated polyglutamine tract in the huntingtin (HTT) protein. The use of biomarkers has become a major component in preclinical studies focusing on HTT lowering strategies. Quantification of soluble mutant HTT (mHTT) in cerebrospinal fluid (CSF) has served as a pharmacodynamic readout and as potential disease progression biomarker. However, development of future assays for HTT measurement from other biofluids, such as blood, will facilitate the access to human samples since CSF collection is an invasive outpatient procedure. Brain cells, in particular neurons, secrete extracellular vesicles (EVs) that cross the blood-brain barrier and circulate in blood. Importantly, EVs have been identified to be involved in HTT export from cells to the extracellular space. However, it is unknow which vesicle subtype correlates better with HD progression. Our work investigates the potential of EVs as non-invasive sources of clinical biomarkers in liquid biopsies. We developed an optimized ultracentrifugation protocol for the purification of ectosomes and exosomes from human samples and plasma of humanized HD mouse models. Ectosomes are larger vesicles that bud from the plasma membrane of cells, whereas exosomes originate from multivesicular bodies and are afterwards released to the extracellular space. Consistent with previous published data in other model systems, ectosomes isolated from plasma of the Hu97/18 mouse model contain both wild-type (wt) and mHTT in higher levels than in exosomes. Similar results were observed in media from HD induced pluripotent stem cells (iPSCs)-differentiated neurons and in Hu97/18 primary neuronal cultures. Interestingly, we also found higher levels of HTT transcripts in this EV subtype. We further demonstrate that initial storage of the samples using a slow freezing protocol preserves HTT and EV protein marker levels, highlighting the importance of sample preparation for EV isolation and analysis. Our results also show that plasma contains vesicles originated from neuronal cells that can be isolated using neuron-specific markers, such as ATPase Na+/K+ transporting subunit alpha 3 (ATP1A3), allowing the evaluation of HTT levels in the brain through vesicles circulating in the blood. Overall, our results demonstrate that HTT protein measurement from EVs isolated from blood can be a potential less-invasive disease biomarker. We also demonstrate that EVs subtypes contain different HTT protein and RNA levels, important for the development of consistent and reliable biomarkers. Further characterization of neuron-specific EVs content from patient-derived biofluids will lead to the development of novel clinical biomarkers and for evaluation of therapeutic strategies.

摘要

亨廷顿病(HD)是一种神经退行性疾病,由HTT基因中的三核苷酸重复序列扩增引起,该基因编码亨廷顿蛋白(HTT)中一段延长的多聚谷氨酰胺序列。生物标志物的应用已成为聚焦于降低HTT策略的临床前研究的一个主要组成部分。脑脊液(CSF)中可溶性突变型HTT(mHTT)的定量已用作药效学读数和潜在的疾病进展生物标志物。然而,开发用于从其他生物流体(如血液)中测量HTT的未来检测方法,将有助于获取人类样本,因为脑脊液采集是一种侵入性的门诊操作。脑细胞,尤其是神经元,会分泌穿过血脑屏障并在血液中循环的细胞外囊泡(EVs)。重要的是,已确定EVs参与了HTT从细胞向细胞外空间的输出。然而,尚不清楚哪种囊泡亚型与HD进展的相关性更好。我们的工作研究了EVs作为液体活检中临床生物标志物的非侵入性来源的潜力。我们开发了一种优化的超速离心方案,用于从人源化HD小鼠模型的人样本和血浆中纯化外切体和外泌体。外切体是从细胞膜上芽生的较大囊泡,而外泌体起源于多囊泡体,随后释放到细胞外空间。与其他模型系统中先前发表的数据一致,从Hu97/18小鼠模型血浆中分离的外切体中野生型(wt)和mHTT的含量均高于外泌体。在HD诱导多能干细胞(iPSC)分化神经元的培养基以及Hu97/18原代神经元培养物中也观察到了类似结果。有趣的是,我们还在这种EV亚型中发现了更高水平的HTT转录本。我们进一步证明,使用缓慢冷冻方案对样本进行初始保存可保留HTT和EV蛋白标志物水平,突出了样本制备对于EV分离和分析的重要性。我们的结果还表明,血浆中含有源自神经元细胞的囊泡,这些囊泡可以使用神经元特异性标志物(如ATP酶Na+/K+转运亚基α3(ATP1A3))进行分离,从而通过血液中循环的囊泡评估大脑中的HTT水平。总体而言,我们的结果表明,从血液中分离的EVs中测量HTT蛋白可能是一种潜在的侵入性较小的疾病生物标志物。我们还证明,EVs亚型含有不同水平的HTT蛋白和RNA,这对于开发一致且可靠的生物标志物很重要。对患者来源生物流体中神经元特异性EVs内容的进一步表征将有助于开发新型临床生物标志物并评估治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/a3dbf03e6acc/nihpp-2025.07.17.665403v1-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/5319377d9d76/nihpp-2025.07.17.665403v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/213186e546a9/nihpp-2025.07.17.665403v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/7bc630ae345b/nihpp-2025.07.17.665403v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/2271be1ae871/nihpp-2025.07.17.665403v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/7fac26893ec6/nihpp-2025.07.17.665403v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/3c09655381bb/nihpp-2025.07.17.665403v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/5f496aa76edb/nihpp-2025.07.17.665403v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/43e2a57ef0c7/nihpp-2025.07.17.665403v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/7d6a4b8a86c9/nihpp-2025.07.17.665403v1-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/6eb380cc75ef/nihpp-2025.07.17.665403v1-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/a3dbf03e6acc/nihpp-2025.07.17.665403v1-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/5319377d9d76/nihpp-2025.07.17.665403v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/213186e546a9/nihpp-2025.07.17.665403v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/7bc630ae345b/nihpp-2025.07.17.665403v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/2271be1ae871/nihpp-2025.07.17.665403v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/7fac26893ec6/nihpp-2025.07.17.665403v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/3c09655381bb/nihpp-2025.07.17.665403v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/5f496aa76edb/nihpp-2025.07.17.665403v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/43e2a57ef0c7/nihpp-2025.07.17.665403v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/7d6a4b8a86c9/nihpp-2025.07.17.665403v1-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/6eb380cc75ef/nihpp-2025.07.17.665403v1-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e124/12330537/a3dbf03e6acc/nihpp-2025.07.17.665403v1-f0011.jpg

相似文献

[1]
Neuron-derived extracellular vesicles in plasma present a potential non-invasive biomarker for Huntingtin protein and RNA assessment in Huntington disease.

bioRxiv. 2025-7-21

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

[4]
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.

Clin Orthop Relat Res. 2025-1-1

[5]
Tetraspanin Positivity as a Function of Extracellular Vesicle Size Measured by a Modified Immuno-TEM Protocol.

ACS Appl Bio Mater. 2025-7-16

[6]
Short-Term Memory Impairment

2025-1

[7]
Isolation and characterization of bone mesenchymal cell small extracellular vesicles using a novel mouse model.

J Bone Miner Res. 2024-10-29

[8]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[9]
Roscovitine, a CDK Inhibitor, Reduced Neuronal Toxicity of mHTT by Targeting HTT Phosphorylation at S1181 and S1201 In Vitro.

Int J Mol Sci. 2024-11-16

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

本文引用的文献

[1]
Most L1CAM Is not Associated with Extracellular Vesicles in Human Biofluids and iPSC-Derived Neurons.

Mol Neurobiol. 2025-4-10

[2]
Extracellular vesicles: new horizons in neurodegeneration.

EBioMedicine. 2025-3

[3]
Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies.

Int J Mol Sci. 2024-9-19

[4]
Single-extracellular vesicle (EV) analyses validate the use of L1 Cell Adhesion Molecule (L1CAM) as a reliable biomarker of neuron-derived EVs.

J Extracell Vesicles. 2024-6

[5]
Huntington disease alters the actionable information in plasma extracellular vesicles.

Clin Transl Med. 2024-1

[6]
Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease.

Expert Rev Mol Diagn. 2023

[7]
ATP1A3 as a target for isolating neuron-specific extracellular vesicles from human brain and biofluids.

Sci Adv. 2023-9-15

[8]
Comprehensive characterization of human brain-derived extracellular vesicles using multiple isolation methods: Implications for diagnostic and therapeutic applications.

J Extracell Vesicles. 2023-8

[9]
Molecular Mechanisms Mediating the Transfer of Disease-Associated Proteins and Effects on Neuronal Activity.

J Parkinsons Dis. 2022

[10]
Ectosomes and exosomes modulate neuronal spontaneous activity.

J Proteomics. 2022-10-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索