Suppr超能文献

通过跨层注意力改进小目标检测。

Improving small object detection via cross-layer attention.

作者信息

Peng Ru, Tan Guoran, Chen Xingyu, Lan Xuguang

机构信息

College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Fundam Res. 2023 Apr 21;5(4):1737-1742. doi: 10.1016/j.fmre.2022.09.037. eCollection 2025 Jul.

Abstract

Small object detection is a fundamental and challenging topic in the computer vision community. To detect small objects in images, several methods rely on feature pyramid networks (FPN), which can alleviate the conflict between resolution and semantic information. However, the FPN-based methods also have limitations. First, existing methods only focus only on regions with close spatial distance, hindering the effectiveness of long-range interactions. Second, element-wise addition ignores the different perceptive fields of the two feature layers, thus causing higher-level features to introduce noise to the lower-level features. To address these problems, we propose a cross-layer attention (CLA) block as a generic block for capturing long-range dependencies and reducing noise from high-level features. Specifically, the CLA block performs feature fusion by factoring in both the channel and spatial dimensions, which provides a reliable way of fusing the features from different layers. Because CLA is a lightweight and general block, it can be plugged into most feature fusion frameworks. On the COCO 2017 dataset, we validated the CLA block by plugging it into several state-of-the-art FPN-based detectors. Experiments show that our approach achieves consistent improvements in both object detection and instance segmentation, which demonstrates the effectiveness of our approach.

摘要

小目标检测是计算机视觉领域一个基础且具有挑战性的课题。为了检测图像中的小目标,有几种方法依赖于特征金字塔网络(FPN),它可以缓解分辨率和语义信息之间的冲突。然而,基于FPN的方法也存在局限性。首先,现有方法仅关注空间距离较近的区域,这阻碍了长距离交互的有效性。其次,逐元素相加忽略了两个特征层不同的感受野,从而导致高层特征给低层特征引入噪声。为了解决这些问题,我们提出了一种跨层注意力(CLA)模块,作为一种通用模块,用于捕获长距离依赖并减少来自高层特征的噪声。具体而言,CLA模块通过同时考虑通道维和空间维来执行特征融合,这提供了一种融合来自不同层特征的可靠方法。由于CLA是一个轻量级的通用模块,它可以插入到大多数特征融合框架中。在COCO 2017数据集上,我们通过将CLA模块插入到几个基于FPN的先进检测器中对其进行了验证。实验表明,我们的方法在目标检测和实例分割方面都取得了一致的改进,这证明了我们方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验