Suppr超能文献

认知进展:利用大语言模型预测即时健康评估

CogProg: Utilizing Large Language Models to Forecast In-the-moment Health Assessment.

作者信息

Sprint Gina, Schmitter-Edgecombe Maureen, Weaver Raven, Wiese Lisa, Cook Diane J

机构信息

Gonzaga University, Spokane, WA USA.

Washington State University, Pullman, WA USA.

出版信息

ACM Trans Comput Healthc. 2025 Apr;6(2). doi: 10.1145/3709153. Epub 2025 Apr 24.

Abstract

Forecasting future health status is beneficial for understanding health patterns and providing anticipatory support for cognitive and physical health difficulties. In recent years, generative large language models (LLMs) have shown promise as forecasters. Though not traditionally considered strong candidates for numeric tasks, LLMs demonstrate emerging abilities to address various forecasting problems. They also provide the ability to incorporate unstructured information and explain their reasoning process. In this paper, we explore whether LLMs can effectively forecast future self-reported health state. To do this, we utilized in-the-moment assessments of mental sharpness, fatigue, and stress from multiple studies, utilizing daily responses (=106 participants) and responses that are accompanied by text descriptions of activities (=32 participants). With these data, we constructed prompt/response pairs to predict a participant's next answer. We fine-tuned several LLMs and applied chain-of-thought prompting evaluating forecasting accuracy and prediction explainability. Notably, we found that LLMs achieved the lowest mean absolute error (MAE) overall (0.851), while gradient boosting achieved the lowest overall root mean squared error (RMSE) (1.356). When additional text context was provided, LLM forecasts achieved the lowest MAE for predicting mental sharpness (0.862), fatigue (1.000), and stress (0.414). These multimodal LLMs further outperformed the numeric baselines in terms of RMSE when predicting stress (0.947), although numeric algorithms achieved the best RMSE results for mental sharpness (1.246) and fatigue (1.587). This study offers valuable insights for future applications of LLMs in health-based forecasting. The findings suggest that LLMs, when supplemented with additional text information, can be effective tools for improving health forecasting accuracy.

摘要

预测未来健康状况有助于理解健康模式,并为认知和身体健康问题提供预期支持。近年来,生成式大语言模型(LLMs)已展现出作为预测工具的潜力。尽管传统上不被视为数值任务的有力候选者,但大语言模型在解决各种预测问题方面展现出了新能力。它们还具备整合非结构化信息并解释其推理过程的能力。在本文中,我们探讨大语言模型能否有效预测未来自我报告的健康状况。为此,我们利用了多项研究中对思维敏捷度、疲劳和压力的即时评估,使用了每日回复(106名参与者)以及伴有活动文本描述的回复(32名参与者)。利用这些数据,我们构建了提示/回复对来预测参与者的下一个答案。我们对几个大语言模型进行了微调,并应用思维链提示来评估预测准确性和预测可解释性。值得注意的是,我们发现大语言模型总体上实现了最低的平均绝对误差(MAE)(0.851),而梯度提升算法实现了最低的总体均方根误差(RMSE)(1.356)。当提供额外的文本上下文时,大语言模型预测思维敏捷度(0.862)、疲劳(1.000)和压力(0.414)的MAE最低。在预测压力时(0.947),这些多模态大语言模型在RMSE方面进一步超过了数值基线,尽管数值算法在预测思维敏捷度(1.246)和疲劳(1.587)方面取得了最佳的RMSE结果。本研究为大语言模型在基于健康的预测中的未来应用提供了有价值的见解。研究结果表明,当辅以额外的文本信息时,大语言模型可以成为提高健康预测准确性的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/361b/12330958/d28eab875dab/nihms-2044820-f0001.jpg

相似文献

本文引用的文献

1
2024 Alzheimer's disease facts and figures.2024 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2024 May;20(5):3708-3821. doi: 10.1002/alz.13809. Epub 2024 Apr 30.
2
LLM Multimodal Traffic Accident Forecasting.大语言模型多模态交通事故预测
Sensors (Basel). 2023 Nov 16;23(22):9225. doi: 10.3390/s23229225.
4
Large language models encode clinical knowledge.大语言模型编码临床知识。
Nature. 2023 Aug;620(7972):172-180. doi: 10.1038/s41586-023-06291-2. Epub 2023 Jul 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验