Suppr超能文献

级联多模态深度学习在阿尔茨海默病和额颞叶痴呆的鉴别诊断、病情进展预测及分期中的应用

Cascaded Multimodal Deep Learning in the Differential Diagnosis, Progression Prediction, and Staging of Alzheimer's and Frontotemporal Dementia.

作者信息

Guarnier Gianmarco, Reinelt Janis, Molloy Eóin N, Mihai Paul Glad, Einaliyan Pegah, Valk Sofie, Modestino Augusta, Ugolini Matteo, Mueller Karsten, Wu Qiong, Babayan Anahit, Castellaro Marco, Villringer Arno, Scherf Nico, Thierbach Konstantin, Schroeter Matthias L

机构信息

Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany.

AICURA medical GmbH, Colditzstr. 34/36, 12099 Berlin, Germany.

出版信息

medRxiv. 2025 Jul 21:2024.09.23.24314186. doi: 10.1101/2024.09.23.24314186.

Abstract

Dementia is a complex condition whose multifaceted nature poses significant challenges in the diagnosis, prognosis, and treatment of patients. Despite the availability of large open-source data fueling a wealth of promising research, effective translation of preclinical findings to clinical practice remains difficult. This barrier is largely due to the complexity of unstructured and disparate preclinical and clinical data, which traditional analytical methods struggle to handle. Novel analytical techniques involving Deep Learning (DL), however, are gaining significant traction in this regard. Here, we have investigated the potential of a cascaded multimodal DL-based system (TelDem), assessing the ability to integrate and analyze a large, heterogeneous dataset (n=7,159 patients), applied to three clinically relevant use cases. Using a Cascaded Multi-Modal Mixing Transformer (CMT), we assessed TelDem's validity and (using a Cross-Modal Fusion Norm - CMFN) model explainability in (i) differential diagnosis between healthy individuals, AD, and three sub-types of frontotemporal lobar degeneration (ii) disease staging from healthy cognition to mild cognitive impairment (MCI) and AD, and (iii) predicting progression from MCI to AD. Our findings show that the CMT enhances diagnostic and prognostic accuracy when incorporating multimodal data compared to unimodal modeling and that cerebrospinal fluid (CSF) biomarkers play a key role in accurate model decision making. These results reinforce the power of DL technology in tapping deeper into already existing data, thereby accelerating preclinical dementia research by utilizing clinically relevant information to disentangle complex dementia pathophysiology.

摘要

痴呆症是一种复杂的病症,其多方面的性质给患者的诊断、预后和治疗带来了重大挑战。尽管有大量开源数据推动了大量有前景的研究,但将临床前研究结果有效转化为临床实践仍然困难。这一障碍主要是由于非结构化和分散的临床前及临床数据的复杂性,传统分析方法难以处理这些数据。然而,涉及深度学习(DL)的新型分析技术在这方面正获得显著关注。在此,我们研究了基于级联多模态深度学习的系统(TelDem)的潜力,评估了整合和分析一个大型异构数据集(n = 7159名患者)并将其应用于三个临床相关用例的能力。使用级联多模态混合变换器(CMT),我们评估了TelDem在以下方面的有效性以及(使用跨模态融合规范 - CMFN)模型可解释性:(i)健康个体、阿尔茨海默病(AD)和三种额颞叶变性亚型之间的鉴别诊断;(ii)从健康认知到轻度认知障碍(MCI)和AD的疾病分期;以及(iii)预测从MCI到AD的进展。我们的研究结果表明,与单模态建模相比,CMT在纳入多模态数据时可提高诊断和预后准确性,并且脑脊液(CSF)生物标志物在准确的模型决策中起关键作用。这些结果强化了深度学习技术在更深入挖掘现有数据方面的能力,从而通过利用临床相关信息来理清复杂的痴呆症病理生理学,加速临床前痴呆症研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12330412/abdba3e804ab/nihpp-2024.09.23.24314186v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验