Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400 Talence, France.
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400 Talence, France.
Artif Intell Med. 2023 Oct;144:102636. doi: 10.1016/j.artmed.2023.102636. Epub 2023 Aug 18.
Alzheimer's disease and Frontotemporal dementia are common forms of neurodegenerative dementia. Behavioral alterations and cognitive impairments are found in the clinical courses of both diseases, and their differential diagnosis can sometimes pose challenges for physicians. Therefore, an accurate tool dedicated to this diagnostic challenge can be valuable in clinical practice. However, current structural imaging methods mainly focus on the detection of each disease but rarely on their differential diagnosis. In this paper, we propose a deep learning-based approach for both disease detection and differential diagnosis. We suggest utilizing two types of biomarkers for this application: structure grading and structure atrophy. First, we propose to train a large ensemble of 3D U-Nets to locally determine the anatomical patterns of healthy people, patients with Alzheimer's disease and patients with Frontotemporal dementia using structural MRI as input. The output of the ensemble is a 2-channel disease's coordinate map, which can be transformed into a 3D grading map that is easily interpretable for clinicians. This 2-channel disease's coordinate map is coupled with a multi-layer perceptron classifier for different classification tasks. Second, we propose to combine our deep learning framework with a traditional machine learning strategy based on volume to improve the model discriminative capacity and robustness. After both cross-validation and external validation, our experiments, based on 3319 MRIs, demonstrated that our method produces competitive results compared to state-of-the-art methods for both disease detection and differential diagnosis.
阿尔茨海默病和额颞叶痴呆是常见的神经退行性痴呆形式。这两种疾病的临床过程中都存在行为改变和认知障碍,其鉴别诊断有时对医生来说具有挑战性。因此,一个专门针对这一诊断挑战的准确工具在临床实践中可能很有价值。然而,目前的结构成像方法主要侧重于检测每种疾病,但很少关注其鉴别诊断。在本文中,我们提出了一种基于深度学习的方法,用于这两种疾病的检测和鉴别诊断。我们建议为此应用利用两种类型的生物标志物:结构分级和结构萎缩。首先,我们建议使用结构 MRI 作为输入,训练一个大型的 3D U-Net 集合来局部确定健康人、阿尔茨海默病患者和额颞叶痴呆患者的解剖模式。集合的输出是一个 2 通道疾病的坐标图,可以转换为易于临床医生解释的 3D 分级图。该 2 通道疾病的坐标图与多层感知机分类器结合用于不同的分类任务。其次,我们建议将我们的深度学习框架与基于体积的传统机器学习策略相结合,以提高模型的判别能力和鲁棒性。在交叉验证和外部验证之后,我们基于 3319 个 MRI 的实验表明,与最先进的方法相比,我们的方法在疾病检测和鉴别诊断方面都产生了有竞争力的结果。
Comput Med Imaging Graph. 2023-3
Front Aging Neurosci. 2025-4-10
Hum Brain Mapp. 2024-1
Alzheimers Dement. 2023-8
Interpret Mach Intell Med Image Comput Topogr Data Anal Appl Med Data (2021). 2021
Neuroimage. 2020-10-1
Dement Neuropsychol. 2014
J Alzheimers Dis. 2017