文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 MRI 的阿尔茨海默病和额颞叶痴呆的深度分级诊断。

Deep grading for MRI-based differential diagnosis of Alzheimer's disease and Frontotemporal dementia.

机构信息

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400 Talence, France.

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400 Talence, France.

出版信息

Artif Intell Med. 2023 Oct;144:102636. doi: 10.1016/j.artmed.2023.102636. Epub 2023 Aug 18.


DOI:10.1016/j.artmed.2023.102636
PMID:37783553
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10904714/
Abstract

Alzheimer's disease and Frontotemporal dementia are common forms of neurodegenerative dementia. Behavioral alterations and cognitive impairments are found in the clinical courses of both diseases, and their differential diagnosis can sometimes pose challenges for physicians. Therefore, an accurate tool dedicated to this diagnostic challenge can be valuable in clinical practice. However, current structural imaging methods mainly focus on the detection of each disease but rarely on their differential diagnosis. In this paper, we propose a deep learning-based approach for both disease detection and differential diagnosis. We suggest utilizing two types of biomarkers for this application: structure grading and structure atrophy. First, we propose to train a large ensemble of 3D U-Nets to locally determine the anatomical patterns of healthy people, patients with Alzheimer's disease and patients with Frontotemporal dementia using structural MRI as input. The output of the ensemble is a 2-channel disease's coordinate map, which can be transformed into a 3D grading map that is easily interpretable for clinicians. This 2-channel disease's coordinate map is coupled with a multi-layer perceptron classifier for different classification tasks. Second, we propose to combine our deep learning framework with a traditional machine learning strategy based on volume to improve the model discriminative capacity and robustness. After both cross-validation and external validation, our experiments, based on 3319 MRIs, demonstrated that our method produces competitive results compared to state-of-the-art methods for both disease detection and differential diagnosis.

摘要

阿尔茨海默病和额颞叶痴呆是常见的神经退行性痴呆形式。这两种疾病的临床过程中都存在行为改变和认知障碍,其鉴别诊断有时对医生来说具有挑战性。因此,一个专门针对这一诊断挑战的准确工具在临床实践中可能很有价值。然而,目前的结构成像方法主要侧重于检测每种疾病,但很少关注其鉴别诊断。在本文中,我们提出了一种基于深度学习的方法,用于这两种疾病的检测和鉴别诊断。我们建议为此应用利用两种类型的生物标志物:结构分级和结构萎缩。首先,我们建议使用结构 MRI 作为输入,训练一个大型的 3D U-Net 集合来局部确定健康人、阿尔茨海默病患者和额颞叶痴呆患者的解剖模式。集合的输出是一个 2 通道疾病的坐标图,可以转换为易于临床医生解释的 3D 分级图。该 2 通道疾病的坐标图与多层感知机分类器结合用于不同的分类任务。其次,我们建议将我们的深度学习框架与基于体积的传统机器学习策略相结合,以提高模型的判别能力和鲁棒性。在交叉验证和外部验证之后,我们基于 3319 个 MRI 的实验表明,与最先进的方法相比,我们的方法在疾病检测和鉴别诊断方面都产生了有竞争力的结果。

相似文献

[1]
Deep grading for MRI-based differential diagnosis of Alzheimer's disease and Frontotemporal dementia.

Artif Intell Med. 2023-10

[2]
Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging.

J Alzheimers Dis. 2018

[3]
Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease.

Neuroimage Clin. 2019-4-3

[4]
Deep learning based pipelines for Alzheimer's disease diagnosis: A comparative study and a novel deep-ensemble method.

Comput Biol Med. 2022-2

[5]
Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI.

Eur Radiol. 2017-8

[6]
Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry.

Neuroimage Clin. 2016-12-7

[7]
Multiparametric MRI to distinguish early onset Alzheimer's disease and behavioural variant of frontotemporal dementia.

Neuroimage Clin. 2017-5-25

[8]
Differential Diagnosis of Frontotemporal Dementia, Alzheimer's Disease, and Normal Aging Using a Multi-Scale Multi-Type Feature Generative Adversarial Deep Neural Network on Structural Magnetic Resonance Images.

Front Neurosci. 2020-10-22

[9]
Towards better interpretable and generalizable AD detection using collective artificial intelligence.

Comput Med Imaging Graph. 2023-3

[10]
Predicting behavioral variant frontotemporal dementia with pattern classification in multi-center structural MRI data.

Neuroimage Clin. 2017-2-6

引用本文的文献

[1]
Lifespan Tree of Brain Anatomy: Diagnostic Values for Motor and Cognitive Neurodegenerative Diseases.

Hum Brain Mapp. 2025-9

[2]
Cascaded Multimodal Deep Learning in the Differential Diagnosis, Progression Prediction, and Staging of Alzheimer's and Frontotemporal Dementia.

medRxiv. 2025-7-21

[3]
Frontotemporal dementia: a systematic review of artificial intelligence approaches in differential diagnosis.

Front Aging Neurosci. 2025-4-10

[4]
The potential role of machine learning and deep learning in differential diagnosis of Alzheimer's disease and FTD using imaging biomarkers: A review.

Neuroradiol J. 2025-1-9

[5]
Mapping Knowledge Landscapes and Emerging Trends in AI for Dementia Biomarkers: Bibliometric and Visualization Analysis.

J Med Internet Res. 2024-8-8

[6]
Research trends and hotspots for frontotemporal dementia from 2000 to 2022: a bibliometric analysis.

Front Neurol. 2024-7-17

[7]
Understanding machine learning applications in dementia research and clinical practice: a review for biomedical scientists and clinicians.

Alzheimers Res Ther. 2024-8-1

[8]
Brain structure ages-A new biomarker for multi-disease classification.

Hum Brain Mapp. 2024-1

本文引用的文献

[1]
Anatomical MRI staging of frontotemporal dementia variants.

Alzheimers Dement. 2023-8

[2]
Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations.

Lancet Neurol. 2022-3

[3]
Lattice Paths for Persistent Diagrams.

Interpret Mach Intell Med Image Comput Topogr Data Anal Appl Med Data (2021). 2021

[4]
Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease.

Front Neurosci. 2021-1-21

[5]
Differential Diagnosis of Frontotemporal Dementia, Alzheimer's Disease, and Normal Aging Using a Multi-Scale Multi-Type Feature Generative Adversarial Deep Neural Network on Structural Magnetic Resonance Images.

Front Neurosci. 2020-10-22

[6]
AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation.

Neuroimage. 2020-10-1

[7]
Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease.

Neuroimage Clin. 2019-4-3

[8]
Logopenic aphasia or Alzheimer's disease: Different phases of the same disease?

Dement Neuropsychol. 2014

[9]
Dissociating Normal Aging from Alzheimer's Disease: A View from Cognitive Neuroscience.

J Alzheimers Dis. 2017

[10]
Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI.

Eur Radiol. 2017-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索