文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测肺癌化疗敏感性的整合机器学习方法:从算法到细胞系验证

Integrative machine learning approach for forecasting lung cancer chemosensitivity: From algorithm to cell line validation.

作者信息

Chen Jinghong, Yi Yonglin, Yang Chunqian, Ying Haoxuan, Zhang Jian, Lin Anqi, Wei Ting, Luo Peng

机构信息

Department of Oncology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University; Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang 222000, China.

Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.

出版信息

Comput Struct Biotechnol J. 2025 Jul 24;27:3307-3318. doi: 10.1016/j.csbj.2025.07.043. eCollection 2025.


DOI:10.1016/j.csbj.2025.07.043
PMID:40778317
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12329548/
Abstract

BACKGROUND: Chemotherapy remains the primary treatment modality for patients with lung cancer; however, substantial inter-patient variability exists in responses to chemotherapeutic agents. Therefore, predicting individual responses is critical for optimizing treatment outcomes and improving patient prognosis. METHODS: This study developed a model to predict chemotherapy response in lung cancer patients by integrating multi-omics and clinical data from the Genomics of Drug Sensitivity in Cancer database, employing 45 machine learning algorithms. Data from the Gene Expression Omnibus database were utilized to validate the model. The impact of key genes on chemotherapy response was assessed in cell lines. RESULTS: A model combining random forest and support vector machine algorithms exhibited superior performance in both the training and validation sets. Furthermore, patients in the sensitive group demonstrated longer overall survival compared to those in the resistant group. TMED4 and DYNLRB1 genes were identified as pivotal features in the model and exhibited higher expression levels in the chemotherapy-resistant group. SiRNA-mediated knockdown of gene expression enhanced the chemosensitivity of lung cancer cell lines to chemotherapeutic agents. CONCLUSIONS: This study successfully developed a high-performance machine learning model for predicting chemotherapy response in lung cancer and elucidated a strong correlation between TMED4 and DYNLRB1 gene expression and chemotherapy resistance. We further provide a user-friendly web server (available at https://smuonco.shinyapps.io/LC-DrugPortal/) to enable clinical utilization of our model, promoting personalized chemotherapy selection for lung cancer patients.

摘要

背景:化疗仍然是肺癌患者的主要治疗方式;然而,患者对化疗药物的反应存在很大的个体差异。因此,预测个体反应对于优化治疗结果和改善患者预后至关重要。 方法:本研究通过整合来自癌症药物敏感性基因组学数据库的多组学和临床数据,采用45种机器学习算法,开发了一种预测肺癌患者化疗反应的模型。利用基因表达综合数据库的数据对该模型进行验证。在细胞系中评估关键基因对化疗反应的影响。 结果:结合随机森林和支持向量机算法的模型在训练集和验证集上均表现出卓越的性能。此外,敏感组患者的总生存期比耐药组患者更长。TMED4和DYNLRB1基因被确定为模型中的关键特征,且在化疗耐药组中表达水平更高。小干扰RNA介导的基因表达敲低增强了肺癌细胞系对化疗药物的敏感性。 结论:本研究成功开发了一种用于预测肺癌化疗反应的高性能机器学习模型,并阐明了TMED4和DYNLRB1基因表达与化疗耐药之间的强相关性。我们还提供了一个用户友好的网络服务器(可在https://smuonco.shinyapps.io/LC-DrugPortal/获取),以便临床应用我们的模型,促进肺癌患者的个性化化疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/ae5212a5673f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/b9661995d7b1/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/b033d69c96fb/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/5e2324a5edb7/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/c915022d6f8c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/ae5212a5673f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/b9661995d7b1/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/b033d69c96fb/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/5e2324a5edb7/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/c915022d6f8c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/12329548/ae5212a5673f/gr4.jpg

相似文献

[1]
Integrative machine learning approach for forecasting lung cancer chemosensitivity: From algorithm to cell line validation.

Comput Struct Biotechnol J. 2025-7-24

[2]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[3]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[4]
Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns.

J Cancer Res Clin Oncol. 2023-10

[5]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[6]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[9]
Development of machine learning model for predicting prolonged operation time in lumbar stenosis undergoing posterior lumbar interbody fusion: a multicenter study.

Spine J. 2025-3

[10]
Predicting Pathological Complete Response Following Neoadjuvant Therapy in Patients With Breast Cancer: Development of Machine Learning-Based Prediction Models in a Retrospective Study.

JMIR Cancer. 2025-7-18

本文引用的文献

[1]
Risk of intraoperative hemorrhage during cesarean scar ectopic pregnancy surgery: development and validation of an interpretable machine learning prediction model.

EClinicalMedicine. 2024-11-29

[2]
Unveiling the Power of Gut Microbiome in Predicting Neoadjuvant Immunochemotherapy Responses in Esophageal Squamous Cell Carcinoma.

Research (Wash D C). 2024-11-14

[3]
B-cell performance in chemotherapy: Unravelling the mystery of B-cell therapeutic potential.

Clin Transl Med. 2024-7

[4]
HPVTIMER: A shiny web application for tumor immune estimation in human papillomavirus-associated cancers.

Imeta. 2023-8-12

[5]
Development and validation of a deep learning-based model to predict response and survival of T790M mutant non-small cell lung cancer patients in early clinical phase trials using electronic medical record and pharmacokinetic data.

Transl Lung Cancer Res. 2024-4-29

[6]
The cell death-related genes machine learning model for precise therapy and clinical drug selection in hepatocellular carcinoma.

J Cell Mol Med. 2024-4

[7]
CD209 signaling pathway as a biomarker for cisplatin chemotherapy response in small cell lung cancer.

Genes Dis. 2023-7-16

[8]
Mutations in the DNA polymerase binding pathway affect the immune microenvironment of patients with small-cell lung cancer and enhance the efficacy of platinum-based chemotherapy.

Cancer Innov. 2023-7-11

[9]
TMED family genes and their roles in human diseases.

Int J Med Sci. 2023

[10]
Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity.

iScience. 2023-6-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索