Suppr超能文献

基于深度学习的模型的开发与验证,用于在早期临床试验中利用电子病历和药代动力学数据预测T790M突变型非小细胞肺癌患者的反应和生存情况。

Development and validation of a deep learning-based model to predict response and survival of T790M mutant non-small cell lung cancer patients in early clinical phase trials using electronic medical record and pharmacokinetic data.

作者信息

Lou Ning, Cui Xinge, Lin Xinyuan, Gao Ruyun, Xu Chi, Qiao Nan, Jiang Ji, Wang Lu, Wang Weicong, Wang Shanbo, Shen Wei, Zheng Xin, Han Xiaohong

机构信息

Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

出版信息

Transl Lung Cancer Res. 2024 Apr 29;13(4):706-720. doi: 10.21037/tlcr-23-737. Epub 2024 Apr 24.

Abstract

BACKGROUND

Epidermal growth factor receptor () T790M mutation is the standard predictive biomarker for third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment. While not all T790M-positive patients respond to third-generation EGFR-TKIs and have a good prognosis, it necessitates novel tools to supplement genotype detection for predicting efficacy and stratifying -mutant patients with various prognoses. Mixture-of-experts (MoE) is designed to disassemble a large model into many small models. Meanwhile, it is also a model ensembling method that can better capture multiple patterns of intrinsic subgroups of enrolled patients. Therefore, the combination of MoE and Cox algorithm has the potential to predict efficacy and stratify survival in non-small cell lung cancer (NSCLC) patients with mutations.

METHODS

We utilized the electronic medical record (EMR) and pharmacokinetic parameters of 326 T790M-mutated NSCLC patients, including 283 patients treated with Abivertinib in phase I (n=177, for training) and II (n=106, for validation) clinical trials and an additional validation cohort 2 comprising 43 patients treated with BPI-7711. Furthermore, 18 patients underwent whole-exome sequencing for biological interpretation of CoxMoE. We evaluated the predictive performance for therapeutic response using the area under the curve (AUC) and the Concordance index (C-index) for progression-free survival (PFS).

RESULTS

CoxMoE exhibited AUCs of 0.73-0.83 for predicting efficacy defined by best overall response (BoR) and achieved C-index values of 0.64-0.65 for PFS prediction in training and validating cohorts. The PFS of 198 patients with a low risk [median, 6.0 (range, 1.0-23.3) months in the abivertinib treated cohort; median 16.5 (range, 1.4-27.4) months in BPI-7711 treated cohort] of being non-responder increased by 43% [hazard ratio (HR), 0.56; 95% confidence interval (CI), 0.40-0.78; P=0.0013] and 50% (HR, 0; 95% CI, 0-0; P=0.01) compared to those at high-risk [median, 4.2 (range, 1.0-35) months in the abivertinib treated cohort; median, 11.0 (range, 1.4-25.1) months in BPI-7711 treated cohort]. Additionally, activated partial thromboplastin time (APTT), creatinine clearance (Ccr), monocyte, and steady-state plasma trough concentration utilited to construct model were found significantly associated with drug resistance and aggressive tumor pathways. A robust correlation was observed between APTT and Ccr with PFS (log-rank test; P<0.01) and treatment response (Wilcoxon test; P<0.05), respectively.

CONCLUSIONS

CoxMoE offers a valuable approach for patient selection by forecasting therapeutic response and PFS utilizing laboratory tests and pharmacokinetic parameters in the setting of early-phase clinical trials. Simultaneously, CoxMoE could predict the efficacy of third-generation EGFR-TKI non-invasively for T790M-positive NSCLC patients, thereby complementing existing EGFR genotype detection.

摘要

背景

表皮生长因子受体(EGFR)T790M突变是第三代表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)治疗的标准预测生物标志物。虽然并非所有T790M阳性患者对第三代EGFR-TKIs都有反应且预后良好,但需要新的工具来补充EGFR基因型检测,以预测疗效并对具有不同预后的T790M突变患者进行分层。专家混合模型(MoE)旨在将一个大型模型分解为许多小型模型。同时,它也是一种模型集成方法,能够更好地捕捉入组患者内在亚组的多种模式。因此,MoE与Cox算法的结合有潜力预测非小细胞肺癌(NSCLC)T790M突变患者的疗效并对生存进行分层。

方法

我们利用了326例T790M突变NSCLC患者的电子病历(EMR)和药代动力学参数,其中包括283例在I期(n = 177,用于训练)和II期(n = 106,用于验证)临床试验中接受阿维替尼治疗的患者,以及另一个由43例接受BPI-7711治疗的患者组成的验证队列2。此外,18例患者接受了全外显子测序,用于CoxMoE的生物学解释。我们使用曲线下面积(AUC)和无进展生存期(PFS)的一致性指数(C-index)评估治疗反应的预测性能。

结果

CoxMoE在预测由最佳总体反应(BoR)定义的疗效时,AUC为0.73 - 0.83,在训练和验证队列中PFS预测的C-index值为0.64 - 0.65。198例低风险(阿维替尼治疗队列中,中位数为6.0(范围,1.0 - 23.3)个月;BPI-7711治疗队列中,中位数为16.5(范围,1.4 - 27.4)个月)无反应患者的PFS与高风险患者(阿维替尼治疗队列中,中位数为4.2(范围,1.0 - 35)个月;BPI-7711治疗队列中,中位数为11.0(范围,1.4 - 25.1)个月)相比,分别增加了43%(风险比(HR),0.56;95%置信区间(CI),0.40 - 0.78;P = 0.0013)和50%(HR,0;95% CI,0 - 0;P = 0.01)。此外,发现用于构建模型的活化部分凝血活酶时间(APTT)、肌酐清除率(Ccr)、单核细胞和稳态血浆谷浓度与耐药性和侵袭性肿瘤途径显著相关。APTT和Ccr与PFS(对数秩检验;P < 0.01)和治疗反应(Wilcoxon检验;P < 0.05)之间分别观察到强相关性。

结论

CoxMoE通过在早期临床试验中利用实验室检查和药代动力学参数预测治疗反应和PFS,为患者选择提供了一种有价值的方法。同时,CoxMoE可以对T790M阳性NSCLC患者的第三代EGFR-TKI疗效进行无创预测,从而补充现有的EGFR基因型检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52c/11082707/2cee13b35af5/tlcr-13-04-706-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验