Suppr超能文献

剖宫产瘢痕部位异位妊娠手术中术中出血的风险:一种可解释的机器学习预测模型的开发与验证

Risk of intraoperative hemorrhage during cesarean scar ectopic pregnancy surgery: development and validation of an interpretable machine learning prediction model.

作者信息

Chen Xinli, Zhang Huan, Guo Dongxia, Yang Siyuan, Liu Bao, Hao Yiping, Liu Qingqing, Zhang Teng, Meng Fanrong, Sun Longyun, Jiao Xinlin, Zhang Wenjing, Ban Yanli, Chi Yugang, Tao Guowei, Cui Baoxia

机构信息

Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.

Dezhou Maternal and Child Health Care Hospital, Dezhou, China.

出版信息

EClinicalMedicine. 2024 Nov 29;78:102969. doi: 10.1016/j.eclinm.2024.102969. eCollection 2024 Dec.

Abstract

BACKGROUND

Current models for predicting intraoperative hemorrhage in cesarean scar ectopic pregnancy (CSEP) are constrained by known risk factors and conventional statistical methods. Our objective is to develop an interpretable prediction model using machine learning (ML) techniques to assess the risk of intraoperative hemorrhage during CSEP in women, followed by external validation and clinical application.

METHODS

This multicenter retrospective study utilized electronic medical record (EMR) data from four tertiary medical institutions. The model was developed using data from 1680 patients with CSEP diagnosed and treated at Qilu Hospital of Shandong University, Chongqing Health Center for Women and Children, and Dezhou Maternal and Child Health Care Hospital between January 1, 2008, and December 31, 2023. External validation data were obtained from Liao Cheng Dong Chang Fu District Maternal and Child Health Care Hospital between January 1, 2021, and December 31, 2023. Random forest (RF), Lasso, Boruta, and Extreme Gradient Boosting (XGBoost) were employed to identify the most influential variables in the model development data set; the best variables were selected based on reaching the λ value. Model development involved eight machine learning methods with ten-fold cross-validation. Accuracy and decision curve analysis (DCA) were used to assess model performance for selection of the optimal model. Internal validation of the model utilized area under the receiver operating characteristic curve (AUC), sensitivity, specificity, Matthews correlation coefficient, and F1 score. These same indicators were also applied to evaluate external validation performance of the model. Finally, visualization techniques were used to present the optimal model which was then deployed for clinical application via network applications.

FINDINGS

Setting λ at the value of 0.003, the optimal variable combination containing 9 variables was selected for model development. The optimal prediction model (Bayes) had an accuracy of 0.879 (95% CI: 0.857-0.901) an AUC of 0.882 (95% CI: 0.860-0.904), a DCA curve maximum threshold probability of 0.41, and a maximum return of 7.86%. The internal validation accuracy was 0.869 (95% CI: 0.847-0.891), an AUC of 0.822 (95% CI: 0.801-0.843), a sensitivity of 0.938, a specificity of 0.422, a Matthews correlation coefficient of 0.392, and an F1 score of 0.925. In the external validation, the accuracy was 0.936 (95% CI: 0.913-0.959), an AUC of 0.853 (95% CI: 0.832-0.874), a sensitivity of 0.954, a specificity of 0.5, a Matthews correlation coefficient of 0.365, and an F1 score of 0.966. This indicates that the prediction model performed well in both internal and external validation.

INTERPRETATION

The developed prediction model, deployed in the network application, is capable of forecasting the risk of intraoperative hemorrhage during CSEP. This tool can facilitate targeted preoperative assessment and clinical decision-making for clinicians. Prospective data should be utilized in future studies to further validate the extended applicability of the model.

FUNDING

Natural Science Foundation of Shandong Province; Qilu Hospital of Shandong University.

摘要

背景

目前用于预测剖宫产瘢痕部位异位妊娠(CSEP)术中出血的模型受到已知风险因素和传统统计方法的限制。我们的目标是使用机器学习(ML)技术开发一种可解释的预测模型,以评估女性CSEP术中出血的风险,随后进行外部验证和临床应用。

方法

这项多中心回顾性研究利用了来自四家三级医疗机构的电子病历(EMR)数据。该模型使用2008年1月1日至2023年12月31日期间在山东大学齐鲁医院、重庆市妇幼保健院和德州市妇幼保健院诊断并治疗的1680例CSEP患者的数据进行开发。外部验证数据来自聊城市东昌府区妇幼保健院2021年1月1日至2023年12月31日期间的数据。采用随机森林(RF)、套索回归、博鲁塔算法和极端梯度提升(XGBoost)来识别模型开发数据集中最具影响力的变量;根据达到λ值选择最佳变量。模型开发涉及八种机器学习方法和十折交叉验证。使用准确性和决策曲线分析(DCA)来评估模型性能以选择最优模型。模型的内部验证利用受试者操作特征曲线下面积(AUC)、敏感性、特异性、马修斯相关系数和F1分数。这些相同的指标也用于评估模型的外部验证性能。最后,使用可视化技术展示最优模型,然后通过网络应用将其部署用于临床应用。

结果

将λ设置为0.003的值,选择包含9个变量的最优变量组合用于模型开发。最优预测模型(贝叶斯)的准确性为0.879(95%CI:0.857 - 0.901),AUC为0.882(95%CI:0.860 - 0.904),DCA曲线最大阈值概率为0.41,最大回报为7.86%。内部验证准确性为0.869(95%CI:0.847 - 0.891),AUC为0.822(95%CI:0.801 - 0.843),敏感性为0.938,特异性为0.422,马修斯相关系数为0.392,F1分数为0.925。在外部验证中,准确性为0.936(95%CI:0.913 - 0.959),AUC为0.853(95%CI:0.832 - 0.874),敏感性为0.954,特异性为0.5,马修斯相关系数为0.365,F1分数为0.966。这表明该预测模型在内部和外部验证中均表现良好。

解读

所开发的预测模型部署在网络应用中,能够预测CSEP术中出血的风险。该工具可为临床医生提供有针对性的术前评估和临床决策提供便利。未来研究应使用前瞻性数据进一步验证该模型的扩展适用性。

资助

山东省自然科学基金;山东大学齐鲁医院。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f92/11646795/3d537e75ebc5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验