Suppr超能文献

用于骨科植入物的生物活性氧化锌修饰的聚偏氟乙烯基压电、骨传导纳米纤维涂层

Bioactive ZnO Decorated PVDF-Based Piezoelectric, Osteoconductive Nanofibrous Coatings for Orthopedic Implants.

作者信息

Vaidya Sumedh, Joshi Mansi, Ghosh Sumanta, More Namdev, Velyutham Ravichandiran, Babu Srivalliputtur Sarath, Kapusetti Govinda

机构信息

Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.

Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR.

出版信息

J Biomed Mater Res A. 2025 Aug;113(8):e37971. doi: 10.1002/jbm.a.37971.

Abstract

Surface modification of titanium-based orthopedic implants has been investigated over the last decades to promote better bone-to-implant association, osseointegration, and fracture healing. Yet, post-surgical failure of coated orthopedic implants occurs due to poor adhesive strength, fatigue failure, high wear rate of coated materials, low biocompatibility, limited osseointegration, and stress-shielding effect. Therefore, there is an unmet clinical need to develop a smart coating strategy. Herein, we have created an electrospun nanofibrous coating for Ti-implants using piezoelectric Polyvinylidene fluoride (PVDF) polymer reinforced with osteoconductive nanofiller Zinc oxide (ZnO). We have found that by varying the ZnO content from 0.5 to 2.0 wt.% in the PVDF matrix, we can modulate the electrospun coating's mechanical, thermal, physicochemical stability, and piezoelectric characteristics. Our results proved that PVDF-ZnO nanofibrous coatings exhibit almost 3-4 fold increase in the piezoelectric d coefficient as well as output voltage, compared to pure PVDF using Piezo-responsive Force Microscopy (PFM). Furthermore, electrically poled piezoelectric PVDF-ZnO nanofibers also demonstrated a significant increment (5-fold) in collagen deposition, hydroxyapatite formation, and improved bio- and hemo-compatibility compared to unpoled nanofibers. Furthermore, through the in vitro experiments, we have confirmed that the piezoelectric PVDF-ZnO nanofibrous activates calcium-calmodulin mediated cellular pathway to induce cell adhesion, proliferation, and cell spreading in the osteoblast cells. Nonetheless, using the biomimetic mechanical bioreactor, we have investigated the piezoelectricity-mediated increased focal adhesion and enhanced F-actin production under the physiologically relevant (i.e., 1%) mechanical strain in bone cells. Moreover, the current study elucidates the piezoelectric-based smart, multifunctional coating strategies for developing an osteoconductive implant.

摘要

在过去几十年中,人们对钛基骨科植入物的表面改性进行了研究,以促进更好的骨与植入物结合、骨整合和骨折愈合。然而,由于涂层骨科植入物的粘合强度差、疲劳失效、涂层材料磨损率高、生物相容性低、骨整合有限以及应力屏蔽效应,术后仍会出现植入物失效的情况。因此,开发一种智能涂层策略仍未满足临床需求。在此,我们使用含有骨传导性纳米填料氧化锌(ZnO)增强的压电聚偏二氟乙烯(PVDF)聚合物,为钛植入物制备了一种电纺纳米纤维涂层。我们发现,通过在PVDF基体中改变ZnO含量从0.5到2.0 wt.%,可以调节电纺涂层的机械、热、物理化学稳定性和压电特性。我们的结果证明,与使用压电响应力显微镜(PFM)的纯PVDF相比,PVDF-ZnO纳米纤维涂层的压电d系数以及输出电压几乎增加了3-4倍。此外,与未极化的纳米纤维相比,电场极化的压电PVDF-ZnO纳米纤维在胶原蛋白沉积、羟基磷灰石形成方面也显示出显著增加(约5倍),并改善了生物和血液相容性。此外,通过体外实验,我们证实了压电PVDF-ZnO纳米纤维激活钙调蛋白介导的细胞途径,以诱导成骨细胞中的细胞粘附及增殖和细胞铺展。尽管如此,我们使用仿生机械生物反应器,研究了在生理相关(即1%)机械应变下,压电性介导的骨细胞中粘着斑增加和F-肌动蛋白产生增强效应。此外,当前的研究阐明了基于压电的智能、多功能涂层策略,用于开发骨传导性植入物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验