Vaidya Sumedh, Joshi Mansi, Ghosh Sumanta, More Namdev, Velyutham Ravichandiran, Babu Srivalliputtur Sarath, Kapusetti Govinda
Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR.
J Biomed Mater Res A. 2025 Aug;113(8):e37971. doi: 10.1002/jbm.a.37971.
Surface modification of titanium-based orthopedic implants has been investigated over the last decades to promote better bone-to-implant association, osseointegration, and fracture healing. Yet, post-surgical failure of coated orthopedic implants occurs due to poor adhesive strength, fatigue failure, high wear rate of coated materials, low biocompatibility, limited osseointegration, and stress-shielding effect. Therefore, there is an unmet clinical need to develop a smart coating strategy. Herein, we have created an electrospun nanofibrous coating for Ti-implants using piezoelectric Polyvinylidene fluoride (PVDF) polymer reinforced with osteoconductive nanofiller Zinc oxide (ZnO). We have found that by varying the ZnO content from 0.5 to 2.0 wt.% in the PVDF matrix, we can modulate the electrospun coating's mechanical, thermal, physicochemical stability, and piezoelectric characteristics. Our results proved that PVDF-ZnO nanofibrous coatings exhibit almost 3-4 fold increase in the piezoelectric d coefficient as well as output voltage, compared to pure PVDF using Piezo-responsive Force Microscopy (PFM). Furthermore, electrically poled piezoelectric PVDF-ZnO nanofibers also demonstrated a significant increment (5-fold) in collagen deposition, hydroxyapatite formation, and improved bio- and hemo-compatibility compared to unpoled nanofibers. Furthermore, through the in vitro experiments, we have confirmed that the piezoelectric PVDF-ZnO nanofibrous activates calcium-calmodulin mediated cellular pathway to induce cell adhesion, proliferation, and cell spreading in the osteoblast cells. Nonetheless, using the biomimetic mechanical bioreactor, we have investigated the piezoelectricity-mediated increased focal adhesion and enhanced F-actin production under the physiologically relevant (i.e., 1%) mechanical strain in bone cells. Moreover, the current study elucidates the piezoelectric-based smart, multifunctional coating strategies for developing an osteoconductive implant.
在过去几十年中,人们对钛基骨科植入物的表面改性进行了研究,以促进更好的骨与植入物结合、骨整合和骨折愈合。然而,由于涂层骨科植入物的粘合强度差、疲劳失效、涂层材料磨损率高、生物相容性低、骨整合有限以及应力屏蔽效应,术后仍会出现植入物失效的情况。因此,开发一种智能涂层策略仍未满足临床需求。在此,我们使用含有骨传导性纳米填料氧化锌(ZnO)增强的压电聚偏二氟乙烯(PVDF)聚合物,为钛植入物制备了一种电纺纳米纤维涂层。我们发现,通过在PVDF基体中改变ZnO含量从0.5到2.0 wt.%,可以调节电纺涂层的机械、热、物理化学稳定性和压电特性。我们的结果证明,与使用压电响应力显微镜(PFM)的纯PVDF相比,PVDF-ZnO纳米纤维涂层的压电d系数以及输出电压几乎增加了3-4倍。此外,与未极化的纳米纤维相比,电场极化的压电PVDF-ZnO纳米纤维在胶原蛋白沉积、羟基磷灰石形成方面也显示出显著增加(约5倍),并改善了生物和血液相容性。此外,通过体外实验,我们证实了压电PVDF-ZnO纳米纤维激活钙调蛋白介导的细胞途径,以诱导成骨细胞中的细胞粘附及增殖和细胞铺展。尽管如此,我们使用仿生机械生物反应器,研究了在生理相关(即1%)机械应变下,压电性介导的骨细胞中粘着斑增加和F-肌动蛋白产生增强效应。此外,当前的研究阐明了基于压电的智能、多功能涂层策略,用于开发骨传导性植入物。