Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
Science. 2023 Mar 24;379(6638):1218-1224. doi: 10.1126/science.abm5134. Epub 2023 Mar 23.
Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution deposition. We observed a standard ferroelectric hysteresis loop down to a thickness of ~1 nanometer. The thin films with thicknesses that range from 1 to 4.56 nanometers possess a relatively large remanent polarization from 17 to 50 microcoulombs per square centimeter. We verified the structure with first-principles calculations, which also pointed to the material being a lone pair-driven ferroelectric material. The structure design of the ultrathin ferroelectric films has great potential for the manufacturing of atomic-scale electronic devices.
原子级铁电体对于高密度电子学非常重要,特别是场效应晶体管、低功耗逻辑和非易失性存储器。我们设计了一种具有氧化铋层状结构的薄膜,通过钐键合可以将铁电态稳定在 1 纳米以下。这种薄膜可以通过具有成本效益的化学溶液沉积在各种衬底上生长。我们观察到标准的铁电滞后环低至约 1 纳米的厚度。厚度在 1 到 4.56 纳米之间的薄膜具有相对较大的剩余极化强度,为 17 到 50 微库仑/平方厘米。我们通过第一性原理计算验证了结构,这也表明该材料是一种孤对驱动的铁电材料。超薄铁电薄膜的结构设计对于制造原子级电子器件具有巨大的潜力。