Suppr超能文献

关于具有稳定学习能力的图神经网络的研究。

Research on GNNs with stable learning.

作者信息

Li Wenbin, Wei Wenxuan, Wang Peiyang, Pan Li, Yang Bo, Xu Yanling

机构信息

Department of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.

Yueyang Modern Service Vocational College, Yueyang, 414000, China.

出版信息

Sci Rep. 2025 Aug 8;15(1):29002. doi: 10.1038/s41598-025-12840-8.

Abstract

Traditional Graph Neural Network (GNN) learning patterns can only achieve optimal performance under the assumption of independent and identically distributed data. However, in real-world scenarios, numerous unpredictable factors give rise to the Out-of-Distribution (OOD) problem. Moreover, this distribution discrepancy may lead to unreliable predictions by GNNs models within unknown OOD domains. Therefore, this paper proposes a machine learning method to enhance the stability of GNN cross-site classification from the perspective of stable learning. The aim is to extract genuine causal features while eliminating spurious causal features. By introducing a feature sample weighting decorrelation technique in the random Fourier transform space and combining it with a baseline GNN model, a Stable-GNN model and a constrained sampling weight gradient update algorithm are designed. Its theoretical proof indicates that this algorithm can ensure the decrease in the loss, thus remedying the shortcomings of the original algorithm in weight updating. While guaranteeing predictive performance on the training distribution data, it also reduces prediction bias on data from unseen test distributions. Compared with the GNN model and the Stable-GNN model (S-GNN), the experimental results of the S-GNN model demonstrate that it not only surpasses the current state-of-the-art GNN models, but also offers a flexible framework for strengthening existing GNNs.

摘要

传统的图神经网络(GNN)学习模式仅在数据独立同分布的假设下才能实现最优性能。然而,在现实世界场景中,众多不可预测的因素导致了分布外(OOD)问题。此外,这种分布差异可能会导致GNN模型在未知的OOD域内做出不可靠的预测。因此,本文从稳定学习的角度提出了一种机器学习方法,以增强GNN跨站点分类的稳定性。目的是提取真实的因果特征,同时消除虚假的因果特征。通过在随机傅里叶变换空间中引入特征样本加权去相关技术,并将其与基线GNN模型相结合,设计了一种稳定GNN模型和一种约束采样权重梯度更新算法。其理论证明表明,该算法能够确保损失的减少,从而弥补了原算法在权重更新方面的不足。在保证对训练分布数据的预测性能的同时,它还减少了对未见测试分布数据的预测偏差。与GNN模型和稳定GNN模型(S-GNN)相比,S-GNN模型的实验结果表明,它不仅超越了当前最先进的GNN模型,还为强化现有GNN提供了一个灵活的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d150/12334600/3a7e28c86606/41598_2025_12840_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验