Srinivasan Shriya, Antonini Marc-Joseph, Alshareef Amro, Sahasrabudhe Atharva, Jenkins Josh, Ishida Keiko, Kuosmanen Johannes, Hayward Alison, Min Seokkee, Langer Robert, Anikeeva Polina, Traverso Giovanni
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Nat Commun. 2025 Aug 10;16(1):7374. doi: 10.1038/s41467-025-62413-6.
Gastrointestinal (GI) dysmotility and associated conditions affect over 20% of population, yet pharmacological, behavioural, and surgical interventions offer limited therapeutic efficacy. Targeted electrical stimulation addressing underlying neuromuscular pathology stands to transform our ability to treat dysmotility. Here, we developed a closed-loop GI neuroprosthesis which activates or relaxes GI tract musculature through electrochemical stimulation in response to sensed food stimuli. We additionally describe a tool supporting minimally invasive endoscopically guided implantation that can penetrate the mucosa, accurately localize the submucosa, and safely deploy this device to directly interface with the enteric nervous system. The neuroprosthesis enables generation of coordinated peristaltic waves, significantly increasing the motility rate in a swine model of oesophageal and stomach dysmotility (p < 0.05, student's t-test). Further, by directly modulating the myenteric plexus and thus mimicking meal ingestion, we induce peristalsis in a fasted state and achieve a metabolic response commensurate with a fed or satiated state. This neuroprosthesis and implantation platform expand opportunities in fundamental studies and treatments of metabolic and neuromuscular pathologies affecting the GI tract.
胃肠道(GI)动力障碍及相关病症影响着超过20%的人口,但药物、行为和手术干预的治疗效果有限。针对潜在神经肌肉病变的靶向电刺激有望改变我们治疗动力障碍的能力。在此,我们开发了一种闭环胃肠神经假体,其通过电化学刺激响应感知到的食物刺激来激活或放松胃肠道肌肉组织。我们还描述了一种支持微创内镜引导植入的工具,该工具可穿透黏膜,准确定位黏膜下层,并安全地部署此设备以直接与肠神经系统对接。该神经假体能够产生协调的蠕动波,在食管和胃动力障碍的猪模型中显著提高蠕动速率(p < 0.05,学生t检验)。此外,通过直接调节肌间神经丛并由此模拟进食,我们在禁食状态下诱导蠕动,并实现与进食或饱腹状态相当的代谢反应。这种神经假体和植入平台为影响胃肠道的代谢和神经肌肉病变的基础研究和治疗拓展了机会。