Suppr超能文献

纳米限域效应促进分子催化剂上的CO电还原为甲醇。

Nanoconfinement promotes CO electroreduction to methanol on a molecular catalyst.

作者信息

Shi Guoshuai, Zhang Wendi, Kang Yikun, Zhao Jin, Lu Tingyu, Yang Chunlei, Chang Mingwei, Shen Yuluo, Gao Xinyang, Wu Jing, Li Ye-Fei, Cao Kecheng, Zhang Liming

机构信息

Department of Chemistry, State Key Laboratory of Porous Materials for Separation and Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China.

School of Physical Science and Technology& Shanghai Key Laboratory of High-resolution Electron Microscopy, Shanghai Tech University, Shanghai, China.

出版信息

Nat Commun. 2025 Aug 9;16(1):7359. doi: 10.1038/s41467-025-62656-3.

Abstract

Confining catalysis within a nanospace can effectively regulate intermediate configurations and product distributions. Here, we demonstrate the inner cavity of carbon nanotubes (CNTs) as a nanoreactor to promote the electrochemical conversion of CO to methanol (CHOH). Cobalt phthalocyanine (CoPc) molecules are rationally incorporated into CNTs of varying diameters, exhibiting different CHOH selectivities. CoPc confined within the CNTs is more prone to CHOH production, whereas CoPc located on the exterior primarily facilitates CO formation. Operando spectroelectrochemical measurements and theoretical calculations demonstrate that the nanoconfined environment effectively accumulates CO as an intermediate, introduces structural deformation in CoPc molecules, enhances *CO adsorption on Co sites, and consequently improves CHOH production. This work underscores the significance of local microenvironment in electrocatalysis and presents an approach to enhancing deep-reduction product selectivity in molecular catalysts through nanoconfinement.

摘要

将催化作用限制在纳米空间内可以有效地调节中间体构型和产物分布。在此,我们展示了碳纳米管(CNT)的内腔作为一种纳米反应器,用于促进CO向甲醇(CH₃OH)的电化学转化。钴酞菁(CoPc)分子被合理地引入到不同直径的CNT中,表现出不同的CH₃OH选择性。限制在CNT内的CoPc更倾向于生成CH₃OH,而位于外部的CoPc主要促进CO的形成。原位光谱电化学测量和理论计算表明,纳米受限环境有效地积累了作为中间体的CO,使CoPc分子发生结构变形,增强了*CO在Co位点上的吸附,从而提高了CH₃OH的产量。这项工作强调了局部微环境在电催化中的重要性,并提出了一种通过纳米限域提高分子催化剂中深度还原产物选择性的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87e/12335512/a9be331d8a23/41467_2025_62656_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验