DeepISLES:一个来自ISLES'22挑战赛的经过临床验证的缺血性中风分割模型。
DeepISLES: a clinically validated ischemic stroke segmentation model from the ISLES'22 challenge.
作者信息
de la Rosa Ezequiel, Reyes Mauricio, Liew Sook-Lei, Hutton Alexandre, Wiest Roland, Kaesmacher Johannes, Hanning Uta, Hakim Arsany, Zubal Richard, Valenzuela Waldo, Robben David, Sima Diana M, Anania Vincenzo, Brys Arne, Meakin James A, Mickan Anne, Broocks Gabriel, Heitkamp Christian, Gao Shengbo, Liang Kongming, Zhang Ziji, Rahman Siddiquee Md Mahfuzur, Myronenko Andriy, Ashtari Pooya, Van Huffel Sabine, Jeong Hyunsu, Yoon Chiho, Kim Chulhong, Huo Jiayu, Ourselin Sebastien, Sparks Rachel, Clèrigues Albert, Oliver Arnau, Lladó Xavier, Chalcroft Liam, Pappas Ioannis, Bertels Jeroen, Heylen Ewout, Moreau Juliette, Hatami Nima, Frindel Carole, Qayyum Abdul, Mazher Moona, Puig Domenec, Lin Shao-Chieh, Juan Chun-Jung, Hu Tianxi, Boone Lyndon, Goubran Maged, Liu Yi-Jui, Wegener Susanne, Kofler Florian, Ezhov Ivan, Shit Suprosanna, Hernandez Petzsche Moritz R, Müller Michael, Menze Bjoern, Kirschke Jan S, Wiestler Benedikt
机构信息
Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
Department of Informatics, Technical University of Munich, Munich, Germany.
出版信息
Nat Commun. 2025 Aug 9;16(1):7357. doi: 10.1038/s41467-025-62373-x.
Diffusion-weighted MRI is critical for diagnosing and managing ischemic stroke, but variability in images and disease presentation limits the generalizability of AI algorithms. We present DeepISLES, a robust ensemble algorithm developed from top submissions to the 2022 Ischemic Stroke Lesion Segmentation challenge we organized. By combining the strengths of best-performing methods from leading research groups, DeepISLES achieves superior accuracy in detecting and segmenting ischemic lesions, generalizing well across diverse axes. Validation on a large external dataset (N = 1685) confirms its robustness, outperforming previous state-of-the-art models by 7.4% in Dice score and 12.6% in F1 score. It also excels at extracting clinical biomarkers and correlates strongly with clinical stroke scores, closely matching expert performance. Neuroradiologists prefer DeepISLES' segmentations over manual annotations in a Turing-like test. Our work demonstrates DeepISLES' clinical relevance and highlights the value of biomedical challenges in developing real-world, generalizable AI tools. DeepISLES is freely available at https://github.com/ezequieldlrosa/DeepIsles .
扩散加权磁共振成像对于缺血性中风的诊断和管理至关重要,但图像和疾病表现的变异性限制了人工智能算法的通用性。我们展示了DeepISLES,这是一种强大的集成算法,它是根据我们组织的2022年缺血性中风病变分割挑战赛中顶尖参赛作品开发的。通过结合领先研究团队中表现最佳方法的优势,DeepISLES在检测和分割缺血性病变方面实现了卓越的准确性,在不同维度上都具有良好的通用性。在一个大型外部数据集(N = 1685)上的验证证实了其稳健性,在骰子系数上比之前的最先进模型高出7.4%,在F1分数上高出12.6%。它在提取临床生物标志物方面也表现出色,并且与临床中风评分密切相关,与专家表现非常接近。在一项类似图灵测试中,神经放射科医生更喜欢DeepISLES的分割结果而非手动标注。我们的工作证明了DeepISLES的临床相关性,并突出了生物医学挑战赛在开发实用、通用的人工智能工具方面的价值。DeepISLES可在https://github.com/ezequieldlrosa/DeepIsles上免费获取。