Graduate School of Artificial Intelligence (GSAI), Department of Electrical Engineering, Medical Science and Engineering, and Medical Device Innovation Center, Convergence IT Engineering, Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
J Imaging Inform Med. 2024 Oct;37(5):2375-2389. doi: 10.1007/s10278-024-01099-6. Epub 2024 May 1.
Ischemic stroke segmentation at an acute stage is vital in assessing the severity of patients' impairment and guiding therapeutic decision-making for reperfusion. Although many deep learning studies have shown attractive performance in medical segmentation, it is difficult to use these models trained on public data with private hospitals' datasets. Here, we demonstrate an ensemble model that employs two different multimodal approaches for generalization, a more effective way to perform on external datasets. First, after we jointly train a segmentation model on diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) MR modalities, the model is inferred on the DWI images. Second, a channel-wise segmentation model is trained by concatenating the DWI and ADC images as input, and then is inferred using both MR modalities. Before training with ischemic stroke data, we utilized BraTS 2021, a public brain tumor dataset, for transfer learning. An extensive ablation study evaluates which strategy learns better representations for ischemic stroke segmentation. In our study, nnU-Net well-known for robustness is selected as our baseline model. Our proposed method is evaluated on three different datasets: the Asan Medical Center (AMC) I and II, and the 2022 Ischemic Stroke Lesion Segmentation (ISLES). Our experiments are widely validated over a large, multi-center, and multi-scanner dataset with a huge amount of 846 scans. Not only stroke lesion models can benefit from transfer learning using brain tumor data, but combining the MR modalities using different training schemes also highly improves segmentation performance. The method achieved a top-1 ranking in the ongoing ISLES'22 challenge and performed particularly well on lesion-wise metrics of interest to neuroradiologists, achieving a Dice coefficient of 78.69% and a lesion-wise F1 score of 82.46%. Also, the method was relatively robust on the AMC I (Dice, 60.35%; lesion-wise F1, 68.30%) and II (Dice; 74.12%; lesion-wise F1, 67.53%) datasets in different settings. The high segmentation accuracy of our proposed method could improve radiologists' ability to detect ischemic stroke lesions in MRI images. Our model weights and inference code are available on https://github.com/MDOpx/ISLES22-model-inference .
急性缺血性脑卒中的分割对于评估患者的损伤严重程度和指导再灌注治疗决策至关重要。虽然许多深度学习研究在医学分割方面表现出了吸引人的性能,但很难使用这些基于公共数据训练的模型来处理私人医院的数据集。在这里,我们展示了一个集成模型,该模型采用了两种不同的多模态方法来进行泛化,这是一种在外部数据集上执行的更有效的方法。首先,我们在弥散加权成像 (DWI) 和表观弥散系数 (ADC) 磁共振模态上联合训练分割模型后,在 DWI 图像上进行推断。其次,通过将 DWI 和 ADC 图像串联作为输入训练一个通道级分割模型,然后使用两种磁共振模态进行推断。在使用缺血性脑卒中数据进行训练之前,我们利用公共脑肿瘤数据集 BraTS 2021 进行了迁移学习。广泛的消融研究评估了哪种策略更适合学习缺血性脑卒中分割的表示。在我们的研究中,nnU-Net 以其稳健性而闻名,被选为我们的基线模型。我们的方法在三个不同的数据集上进行了评估:Asan 医疗中心 (AMC) I 和 II 以及 2022 年缺血性脑卒中病变分割 (ISLES)。我们的实验在一个大型的、多中心的、多扫描仪数据集上进行了广泛验证,该数据集包含了 846 个扫描。不仅脑卒中病变模型可以从使用脑肿瘤数据的迁移学习中受益,而且使用不同的训练方案结合磁共振模态也可以显著提高分割性能。该方法在正在进行的 ISLES'22 挑战赛中获得了第一名,并在神经放射学家感兴趣的病变指标上表现出色,达到了 78.69%的 Dice 系数和 82.46%的病变 F1 分数。此外,该方法在不同设置下的 AMC I (Dice, 60.35%; lesion-wise F1, 68.30%)和 AMC II (Dice; 74.12%; lesion-wise F1, 67.53%)数据集上也具有较强的稳健性。我们提出的方法的高分割准确性可以提高放射科医生在 MRI 图像中检测缺血性脑卒中病变的能力。我们的模型权重和推理代码可在 https://github.com/MDOpx/ISLES22-model-inference 上获得。