Karaman Onur, Ceyran Ertuğrul, Bolsu Kariper S Esra, Kariper İshak Afşin, Karaman Ceren
Department of Medical Services and Techniques, Medical Imaging Tecniques, Akdeniz University, Antalya, Turkey.
Art and Science Faculty, Department of Chemistry, Ağrı İbrahim Çeçen University, Ağrı, Turkey.
Sci Rep. 2025 Aug 9;15(1):29194. doi: 10.1038/s41598-025-13250-6.
Nickel hydroxide (Ni(OH)₂) is a promising electrode material for supercapacitors due to its high theoretical capacitance. However, its practical performance is hindered by limited cycle stability, poor electrical conductivity, and sluggish ion transport. To overcome these limitations, this study introduces a novel strategy involving high-energy X-ray irradiation-induced functionalization to enhance the electrochemical properties of Ni(OH)₂ electrodes. Pristine Ni(OH)₂ was subjected to 15 MV X-ray irradiation at a dose of 10-20 Gy, utilizing Compton scattering to induce controlled surface-level modifications while preserving the bulk crystal structure. Physicochemical characterizations including XRD, Raman spectroscopy, FTIR, and ICP-MS revealed the introduction of new surface functionalities and optimized ion diffusion pathways, without compromising isotopic or crystallographic integrity. Electrochemical performance was evaluated in 1.0 M Na₂SO₄ electrolyte. The irradiated electrode (f-Ni(OH)₂) demonstrated a specific areal capacitance of 671.2 mF·cm⁻² at a scan rate of 1 mV·s⁻¹, marking a 41% improvement over its non-irradiated counterpart (474.7 mF·cm⁻²). Galvanostatic charge-discharge measurements yielded a high capacitance of 1253.5 mF·cm⁻² at 1.0 mA·cm⁻². Electrochemical impedance spectroscopy further confirmed enhanced ion and electron kinetics, with a decrease in solution resistance from 18.4 Ω to 13.0 Ω. Critically, the f-Ni(OH)₂ electrodes retained 99.2% of their initial capacitance after 5,000 continuous cycles, demonstrating exceptional long-term stability. The observed improvements place f-Ni(OH)₂ within the performance range of microsupercapacitor technologies, highlighting their strong potential for future integration into miniaturized energy storage platforms. This work represents the first demonstration of using high-energy X-ray irradiation to functionalize metal hydroxides for energy storage applications, offering a scalable, chemical-free, and cost-effective approach to engineer next-generation supercapacitor electrodes. The findings provide new insights into radiation-matter interactions for material engineering, offering a promising route toward high-performance, long-lifespan energy storage systems.
氢氧化镍(Ni(OH)₂)因其高理论电容而成为一种很有前景的超级电容器电极材料。然而,其实际性能受到循环稳定性有限、电导率差和离子传输缓慢的阻碍。为了克服这些限制,本研究引入了一种新策略,即通过高能X射线辐照诱导功能化来增强Ni(OH)₂电极的电化学性能。利用康普顿散射在保持体相晶体结构的同时诱导可控的表面层修饰,将原始的Ni(OH)₂置于15 MV的X射线下,剂量为10 - 20 Gy。包括XRD、拉曼光谱、FTIR和ICP-MS在内的物理化学表征揭示了新表面功能的引入和优化的离子扩散途径,同时不影响同位素或晶体完整性。在1.0 M Na₂SO₄电解液中评估了电化学性能。辐照电极(f-Ni(OH)₂)在扫描速率为1 mV·s⁻¹时表现出671.2 mF·cm⁻²的比面积电容,比未辐照的对应物(474.7 mF·cm⁻²)提高了41%。恒电流充放电测量在1.0 mA·cm⁻²时产生了1253.5 mF·cm⁻²的高电容。电化学阻抗谱进一步证实了离子和电子动力学的增强,溶液电阻从18.4 Ω降至13.0 Ω。至关重要的是,f-Ni(OH)₂电极在连续5000次循环后保留了其初始电容的99.2%,显示出出色的长期稳定性。观察到的改进使f-Ni(OH)₂处于微型超级电容器技术的性能范围内,突出了它们未来集成到小型化储能平台中的强大潜力。这项工作首次展示了利用高能X射线辐照对金属氢氧化物进行功能化以用于储能应用,提供了一种可扩展、无化学试剂且具有成本效益的方法来设计下一代超级电容器电极。这些发现为材料工程中的辐射-物质相互作用提供了新的见解,为高性能、长寿命储能系统提供了一条有前景的途径。