Suppr超能文献

校准幽门螺杆菌多重血清学检测方法

Calibrating multiplex serology for Helicobacter pylori.

作者信息

Dankwa Emmanuelle A, Plummer Martyn, Chapman Daniel, Jeske Rima, Butt Julia, Hill Michael, Waterboer Tim, Millwood Iona Y, Yang Ling, Kartsonaki Christiana

机构信息

Harvard T. H. Chan School of Public Health, Boston, MA, USA.

Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK.

出版信息

Diagn Progn Res. 2025 Aug 11;9(1):17. doi: 10.1186/s41512-025-00202-x.

Abstract

BACKGROUND

Helicobacter pylori (H. pylori) is a bacterium that colonizes the stomach and is a major risk factor for gastric cancer, with an estimated 89% of non-cardia gastric cancer cases worldwide attributable to H. pylori. Prospective studies provide reliable evidence for quantifying the association between gastric cancer and H. pylori, as they circumvent the risk of a false negative due to possible reduction in antibody levels before cancer development.

METHODS

In a large-scale prospective study within the China Kadoorie Biobank, H. pylori infection is being analysed as a risk factor for gastric cancer. The presence of infection is typically determined by serological tests. The immunoblot test, although well established, is more labour intensive and uses a larger amount of plasma than the alternative high-throughput multiplex serology test. Immunoblot outputs a binary positive/negative serostatus classification, while multiplex outputs a vector of continuous antigen measurements. When mapping such multidimensional continuous measurements onto a binary classification, statistical challenges arise in defining classification cut-offs and accounting for the differences in infection evidence provided by different antigens. We discuss these challenges and propose a novel solution to optimize the translation of the continuous measurements from multiplex serology into probabilities of H. pylori infection, using classification algorithms (Bayesian additive regressive trees (BART), multidimensional monotone BART, logistic regression, random forest and elastic net). We (i) calibrate and apply classification models to predict probabilities of H. pylori infection given multiplex measurements, (ii) compare the predictive performance of the models using immunoblot as reference, (iii) discuss reasons for the differences in predictive performance and (iv) apply the calibrated models to gain insights on the relative strengths of infection evidence provided by the various antigens.

RESULTS

All models showed high discriminative ability with at least 95% area under the curve (AUC) estimates on the training and test data. There was no substantial difference between the performance of models on the training and test data.

CONCLUSIONS

Classification algorithms can be used to calibrate the H. pylori multiplex serology test to the immunoblot test in the China Kadoorie Biobank. This study furthers our understanding of the applicability of classification algorithms to the context of serologic tests.

摘要

背景

幽门螺杆菌(H. pylori)是一种寄生于胃部的细菌,是胃癌的主要危险因素,据估计,全球89%的非贲门胃癌病例可归因于幽门螺杆菌。前瞻性研究为量化胃癌与幽门螺杆菌之间的关联提供了可靠证据,因为它们规避了癌症发生前抗体水平可能降低导致假阴性的风险。

方法

在中国嘉道理生物银行开展的一项大规模前瞻性研究中,幽门螺杆菌感染正被作为胃癌的一个危险因素进行分析。感染的存在通常通过血清学检测来确定。免疫印迹试验虽然已得到广泛应用,但比另一种高通量多重血清学检测劳动强度更大,且需要使用更多血浆。免疫印迹输出二元阳性/阴性血清状态分类,而多重检测输出连续抗原测量值的向量。当将这种多维连续测量值映射到二元分类时,在定义分类临界值和考虑不同抗原提供的感染证据差异方面会出现统计挑战。我们讨论了这些挑战,并提出了一种新的解决方案,即使用分类算法(贝叶斯加法回归树(BART)、多维单调BART、逻辑回归、随机森林和弹性网络)来优化将多重血清学的连续测量值转化为幽门螺杆菌感染概率的过程。我们(i)校准并应用分类模型,根据多重测量值预测幽门螺杆菌感染概率,(ii)以免疫印迹为参考比较模型的预测性能,(iii)讨论预测性能差异的原因,(iv)应用校准后的模型,以深入了解各种抗原提供的感染证据的相对强度。

结果

所有模型在训练和测试数据上均显示出较高的判别能力,曲线下面积(AUC)估计值至少为95%。模型在训练和测试数据上的性能没有实质性差异。

结论

在中国嘉道理生物银行中,分类算法可用于将幽门螺杆菌多重血清学检测校准至免疫印迹试验。本研究进一步加深了我们对分类算法在血清学检测背景下适用性的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db99/12337413/426af00b26a1/41512_2025_202_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验