Suppr超能文献

基于人工神经网络与基团贡献法耦合预测深共熔溶剂的声速

Prediction of speed of sound of deep eutectic solvents using artificial neural network coupled with group contribution approach.

作者信息

Adhab Ayat Hussein, Mahdi Morug Salih, Doshi Hardik, Yadav Anupam, Manjunatha R, Kumar Sushil, Shit Debasish, Sangwan Gargi, Mansoor Aseel Salah, Radi Usama Kadem, Abd Nasr Saadoun

机构信息

Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.

College of MLT, Ahl Al Bayt University, Karbala, Iraq.

出版信息

Sci Rep. 2025 Aug 10;15(1):29238. doi: 10.1038/s41598-025-14094-w.

Abstract

Predicting the physiochemical properties of deep eutectic solvents (DESs) is crucial for designing new solvents. Heat capacity and speed of sound are important thermodynamic properties in chemical processes. However, experimental data on the speed of sound in DESs is limited. Consequently, a thermodynamic model is needed to estimate the speed of sound in DESs over a wide range of pressures and temperatures. A key challenge in these models is accurately estimating the ideal gas heat capacity. Since the ideal gas heat capacity of DESs is often unavailable, a machine learning (ML) approach, using artificial neural networks (ANNs) coupled with a Group Contribution (GC) method, is a promising technique. The GC approach will be used to estimate critical temperature, volume, and acentric factor of DESs, which can then be input into the ANN model to predict the speed of sound. The results show that using a combination of a GC method and ANNs or CatBoost ML provides a highly accurate prediction of the speed of sound in DESs. Input parameters to the ANN + GC include temperature, acentric factor, molecular weight, and critical volume. The absolute relative deviation (ARD%) and R values of correlated speed of sound for the ANN + GC model have been obtained 0.032% and 0.998, respectively. The ARD% for both the ANN + GC and ML + GC approaches was substantially lower than that of the correlation-based models. Furthermore, cumulative frequency diagrams and the leverage approach were implemented to validate the quality and reliability of the proposed model. The leverage analysis confirmed the accuracy of the data used and the high reliability of the ANN + GC model for estimating the speed of sound in DESs. This analysis indicates that the ANN + GC and ML + GC methods can effectively estimate the speed of sound in DESs based on molecular structure. Therefore, these approaches offer a promising tool for predicting the speed of sound of newly designed DESs when experimental data is unavailable.

摘要

预测深共熔溶剂(DESs)的物理化学性质对于设计新型溶剂至关重要。热容和声速是化学过程中重要的热力学性质。然而,关于DESs声速的实验数据有限。因此,需要一个热力学模型来估计DESs在广泛的压力和温度范围内的声速。这些模型中的一个关键挑战是准确估计理想气体热容。由于DESs的理想气体热容通常无法获得,一种使用人工神经网络(ANNs)并结合基团贡献(GC)方法的机器学习(ML)方法是一种很有前景的技术。GC方法将用于估计DESs的临界温度、体积和偏心因子,然后将其输入到ANN模型中以预测声速。结果表明,结合GC方法和ANNs或CatBoost ML能够高度准确地预测DESs中的声速。ANN + GC的输入参数包括温度、偏心因子、分子量和临界体积。ANN + GC模型的关联声速的绝对相对偏差(ARD%)和R值分别为0.032%和0.998。ANN + GC和ML + GC方法的ARD%均显著低于基于相关性的模型。此外,还采用了累积频率图和杠杆分析法来验证所提出模型的质量和可靠性。杠杆分析证实了所用数据的准确性以及ANN + GC模型在估计DESs声速方面的高可靠性。该分析表明,ANN + GC和ML + GC方法能够基于分子结构有效地估计DESs中的声速。因此,当没有实验数据时,这些方法为预测新设计的DESs的声速提供了一个很有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/224c/12336353/2a557e5ef380/41598_2025_14094_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验