Biyani Shruti A, Moriuchi Yuta W, Thompson David H
Department of Chemistry, Purdue University, Purdue University Center for Cancer Research, Multidisciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, United States.
Chem Methods. 2021 Jul;1(7):323-339. doi: 10.1002/cmtd.202100023. Epub 2021 Jul 6.
Exploration of synthetic transformations using high throughput experimentation (HTE) can accelerate the rapid discovery of optimal conditions for organic reactions and improve our understanding of those processes and synthetic route for different applications. The surge in high throughput techniques has been applied to a broad range of methods and target-oriented reaction optimizations across a diverse array of bond-constructions. In this Minireview, we describe HTE based workflows, discuss different transformations that have been evaluated using HTE platforms with a focus on homogeneous catalytic reactions, and highlight challenges reported in the field since 2016. The HTE efforts are grouped by the type of bonds being formed, for instance, carbon-carbon (C-C), carbon-nitrogen (C-N), carbon-halogen or carbon-oxygen (C-X) bonds, as well as photochemical transformations and hydrogenations. The potential of HTE to rapidly guide the optimization of multiple synthetic challenges makes it a very attractive and powerful tool for synthetic organic chemists.
利用高通量实验(HTE)探索合成转化能够加速有机反应最佳条件的快速发现,并增进我们对这些过程以及不同应用合成路线的理解。高通量技术的兴起已应用于广泛的方法以及针对各种键构建的目标导向反应优化。在本综述中,我们描述基于HTE的工作流程,讨论使用HTE平台评估的不同转化,重点是均相催化反应,并突出2016年以来该领域报道的挑战。HTE工作按形成的键的类型进行分组,例如碳 - 碳(C - C)、碳 - 氮(C - N)、碳 - 卤或碳 - 氧(C - X)键,以及光化学转化和氢化反应。HTE能够快速指导多种合成挑战的优化,这使其成为合成有机化学家极具吸引力且强大的工具。