Rosa Ivana Felipe, Souza Beatriz Marques, Doretto Lucas Benites, Rodrigues Maira da Silva, Barquilha Caroline Nascimento, Fioretto Matheus Naia, Frediani Portela Luiz Marcos, Souza Vieira José Carlos, Justulin Luis Antonio, de Magalhães Padilha Pedro, Shao Changwei, Nóbrega Rafael Henrique
Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil.
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.
Front Bioeng Biotechnol. 2025 Jul 25;13:1631542. doi: 10.3389/fbioe.2025.1631542. eCollection 2025.
Decellularization represents a robust strategy for generating biologically derived scaffolds that retain the native architecture and biochemical complexity of the extracellular matrix (ECM), thereby providing a conducive microenvironment for germ cell adhesion, proliferation, and differentiation-processes fundamental to the reconstitution of testicular function. While decellularized ECM (dECM) scaffolds have been extensively utilized in mammalian organoid systems for spermatogenesis and fertility-related research, the development of standardized protocols tailored to teleost models remains largely unexplored. In the present study, we established an efficient decellularization protocol for testicular tissue derived from , employing 0.1% sodium dodecyl sulfate (SDS) in conjunction with physical agitation. The efficacy of cellular removal was confirmed by DNA quantification, histological evaluation and DAPI staining, whereas the preservation of ECM integrity was validated through immunofluorescence, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and proteomic profiling. SDS treatment effectively eliminated cellular components while preserving key ECM proteins, including Collagen I, Fibronectin, and Laminin α1. Notably, critical ultrastructural features-such as the basal lamina, seminiferous tubules, and the D-periodic banding pattern of collagen fibrils-were retained post-decellularization. Proteomic analyses revealed enrichment of proteins associated with ECM organization, cell adhesion, and collagen biosynthesis, while proteins involved in glycolysis and metabolic pathways were downregulated. Moreover, the decellularized matrix retained a comprehensive repertoire of matrisome components, including multiple collagen subtypes (Col1, Col2, Col4, Col5, Col6, and Col7), glycoproteins (Fibronectin, Laminin), proteoglycans (Heparan sulfate), ECM-affiliated proteins (Integrins), secreted factors (Collagen- and calcium-binding EGF), and ECM regulators (Glycosaminoglycans). Collectively, these findings demonstrate that our protocol effectively preserves the structural and functional hallmarks of the testicular ECM, underscoring its potential as a biologically relevant scaffold for future applications in fish reproductive biology. Further investigations are warranted to optimize hydrogel formulations and assess their capacity to support the proliferation and differentiation of spermatogonial stem cells (SSCs).
去细胞化是一种用于生成生物衍生支架的有效策略,该支架保留了细胞外基质(ECM)的天然结构和生化复杂性,从而为生殖细胞的黏附、增殖和分化提供了有利的微环境,这些过程是睾丸功能重建的基础。虽然去细胞化的ECM(dECM)支架已在哺乳动物类器官系统中广泛用于精子发生和生育相关研究,但针对硬骨鱼模型的标准化方案的开发在很大程度上仍未得到探索。在本研究中,我们建立了一种有效的从[具体来源未提及]睾丸组织中进行去细胞化的方案,采用0.1%十二烷基硫酸钠(SDS)并结合物理搅拌。通过DNA定量、组织学评估和DAPI染色确认了细胞去除的效果,而通过免疫荧光、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和蛋白质组分析验证了ECM完整性的保留。SDS处理有效地消除了细胞成分,同时保留了关键的ECM蛋白,包括胶原蛋白I、纤连蛋白和层粘连蛋白α1。值得注意的是,关键的超微结构特征,如基膜、生精小管和胶原纤维的D周期带状模式,在去细胞化后得以保留。蛋白质组分析显示与ECM组织、细胞黏附和胶原生物合成相关的蛋白质富集,而参与糖酵解和代谢途径的蛋白质则下调。此外,去细胞化的基质保留了完整的基质体成分,包括多种胶原蛋白亚型(Col1、Col2、Col4、Colt5、Col6和Col7)、糖蛋白(纤连蛋白、层粘连蛋白)、蛋白聚糖(硫酸乙酰肝素)、ECM相关蛋白(整合素)、分泌因子(胶原和钙结合表皮生长因子)以及ECM调节剂(糖胺聚糖)。总体而言,这些发现表明我们的方案有效地保留了睾丸ECM的结构和功能特征,突出了其作为生物相关支架在鱼类生殖生物学未来应用中的潜力。有必要进行进一步的研究以优化水凝胶配方并评估其支持精原干细胞(SSCs)增殖和分化的能力。