Suppr超能文献

基于喹诺酮的腙类化合物作为靶向关键代谢酶的潜在抗糖尿病药物的合成及生物学评价

Synthesis and Biological Evaluation of Quinolone-Based Hydrazones as Potential Antidiabetic Agents Targeting Key Metabolic Enzymes.

作者信息

Pravin Naik Jui, Kavalapure Rohini S, Gharge Shankar, Alegaon Shankar G, Ranade Shriram D, Wong Ling Shing, Ramu Ramith, M Ramya C

机构信息

Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher education and Research, Belagavi, Karnataka 590 010, India.

Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia.

出版信息

ACS Omega. 2025 Jul 22;10(30):33712-33730. doi: 10.1021/acsomega.5c04663. eCollection 2025 Aug 5.

Abstract

A series of novel structures featuring quinolone-based hydrazones (-) were synthesized, characterized, and screened for their potential inhibition of key enzymes involved in carbohydrate metabolism, namely human pancreatic α-amylase (HPA) and human lysosomal acid α-glucosidase, as well as aldose reductase, an enzyme associated with diabetes-related complications. The synthesized compounds exhibited a broad range of inhibitory activities against both α-glucosidase (IC: 7.44 ± 0.07 to 14.75 ± 0.15 μg/mL) and α-amylase (IC: 21.05 ± 0.17 to 31.43 ± 0.11 μg/mL). Notably, compound (5-nitrofuran) demonstrated the most potent inhibition against both enzymes (α-glucosidase IC = 7.44 ± 0.07 μg/mL; α-amylase IC = 21.05 ± 0.17 μg/mL), surpassing the standard drug acarbose. Furthermore, these hydrazones also showed promising aldose reductase inhibitory activities (IC: 4.12 ± 0.09 to 11.00 ± 0.05 μg/mL), with compound again exhibiting the highest potency (IC = 4.12 ± 0.09 μg/mL), even outperforming quercetin. Kinetic studies on revealed a reversible, noncompetitive inhibition mechanism against aldose reductase with an inhibition constant ( ) of 4.65 μM. Molecular docking studies against α-amylase, α-glucosidase, and aldose reductase demonstrated favorable binding interactions for several compounds, with showing particularly strong interactions with the active site of aldose reductase (docking score: -10.051). Molecular dynamics simulations of the -aldose reductase complex over 100 ns confirmed stable binding within the active site. Density functional theory (DFT) analysis of revealed a small HOMO-LUMO energy gap (0.112566 eV) and a soft nature, suggesting good chemical reactivity. These findings showcase the potential of quinolone-based hydrazones, particularly compound , as promising candidates aiming at the development of multitarget therapies for antidiabetic agents.

摘要

合成了一系列具有喹诺酮基腙(-)的新型结构,对其进行了表征,并筛选了它们对参与碳水化合物代谢的关键酶的潜在抑制作用,这些关键酶即人胰腺α-淀粉酶(HPA)、人溶酶体酸性α-葡萄糖苷酶以及与糖尿病相关并发症有关的醛糖还原酶。合成的化合物对α-葡萄糖苷酶(IC:7.44±0.07至14.75±0.15μg/mL)和α-淀粉酶(IC:21.05±0.17至31.43±0.11μg/mL)均表现出广泛的抑制活性。值得注意的是,化合物(5-硝基呋喃)对这两种酶均表现出最强的抑制作用(α-葡萄糖苷酶IC = 7.44±0.07μg/mL;α-淀粉酶IC = 21.05±0.17μg/mL),超过了标准药物阿卡波糖。此外,这些腙还显示出有前景的醛糖还原酶抑制活性(IC:4.12±0.09至11.00±0.05μg/mL),化合物再次表现出最高的活性(IC = 4.12±0.09μg/mL),甚至超过了槲皮素。对其进行的动力学研究揭示了对醛糖还原酶的可逆、非竞争性抑制机制,抑制常数()为4.65μM。针对α-淀粉酶、α-葡萄糖苷酶和醛糖还原酶的分子对接研究表明,几种化合物具有良好的结合相互作用,其中与醛糖还原酶的活性位点表现出特别强的相互作用(对接分数:-10.051)。对-醛糖还原酶复合物进行的100 ns以上的分子动力学模拟证实了在活性位点内的稳定结合。对其进行的密度泛函理论(DFT)分析揭示了较小的HOMO-LUMO能隙(0.112566 eV)和柔软的性质,表明其具有良好的化学反应性。这些发现展示了喹诺酮基腙,特别是化合物作为开发抗糖尿病多靶点治疗药物的有前景候选物的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e07/12332697/a019cdbeeeed/ao5c04663_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验