Lisníková Soňa, Novák Petr
Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, Olomouc CZ-77146, Czech Republic.
ACS Omega. 2025 Jul 21;10(30):33461-33470. doi: 10.1021/acsomega.5c03761. eCollection 2025 Aug 5.
This study investigates the optimization of MIL-100-(Fe) metal-organic framework (MOF) synthesis for enhanced CO adsorption, focusing on the effects of the reaction time, initial pressure, and precursor concentration on the BET surface area, crystallinity, and pore size distribution. Through hydrothermal synthesis, three MIL-100-(Fe) series were developed to examine the relationship between structural parameters and CO uptake, characterized by powder X-ray diffraction (XRD), adsorption analysis, and Mössbauer spectroscopy. The results show that higher precursor concentrations lead to increased crystallinity and surface area, with BET values reaching a peak at 1775 m/g. The sample with the optimal precursor concentration demonstrated the highest CO uptake at 1.91 mmol/g, likely due to the presence of fine hematite nanoparticles within the structure. Additionally, the samples exhibited excellent stability and reusability in the cyclic CO sorption experiments. These findings provide valuable insights into the synthesis-structure-property relationships in MIL-100-(Fe), enhancing its potential for CO capture and environmental remediation.
本研究旨在探究用于增强CO吸附的MIL-100-(Fe)金属有机框架(MOF)合成的优化方法,重点关注反应时间、初始压力和前驱体浓度对BET表面积、结晶度和孔径分布的影响。通过水热合成法,制备了三个MIL-100-(Fe)系列,以研究结构参数与CO吸附量之间的关系,并通过粉末X射线衍射(XRD)、吸附分析和穆斯堡尔光谱对其进行表征。结果表明,较高的前驱体浓度会导致结晶度和表面积增加,BET值在1775 m²/g时达到峰值。具有最佳前驱体浓度的样品在1.91 mmol/g时表现出最高的CO吸附量,这可能是由于结构中存在细小的赤铁矿纳米颗粒。此外,在循环CO吸附实验中,样品表现出优异的稳定性和可重复使用性。这些发现为MIL-100-(Fe)的合成-结构-性能关系提供了有价值的见解,增强了其在CO捕获和环境修复方面的潜力。