Zhu Pan, Li Jun, Wang YiPing, Jin Yang
School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
ACS Appl Mater Interfaces. 2025 Aug 20;17(33):46967-46976. doi: 10.1021/acsami.5c08297. Epub 2025 Aug 11.
High-voltage cathodes (HVCs) have emerged as a critical focus of research for the next generation of high-energy-density sodium-ion batteries (SIBs). Overcoming the irreversible phase transition and capacity degradation of high-performance sodium superionic conductors (NASICON) under high voltage (≈4.0 V) remains a significant challenge. Accordingly, this work employs a multielement doping approach to engineer the Multi-Enhanced NASICON cathode (NaCrMnFeNiVAl(PO), ME-NASICON), achieving high voltage, high entropy, and exceptional cycling stability. The ME-NASICON cathode delivers a remarkable specific capacity of 166.98 mAh/g at 0.1 C. Benefiting from a high-entropy configuration, it exhibits minimal lattice volume variation of just 1.52%, effectively suppressing detrimental structural evolution and demonstrating outstanding lattice stability. Even after 2000 cycles at a high current rate of 10 C (1.2 A g), it retains 69.07% of its initial capacity. Furthermore, the voltage hysteresis associated with Mn redox activity is markedly mitigated, resulting in an elevated average operating voltage. Finally, the ME-NASICON//HC fully cell achieves a specific capacity of 146 mAh/g (12 mA/g) and an energy density of 347.5 Wh/kg. This research paves the way for the development of high-energy-density and long-lifetime cathode materials for SIBs, with promising potential applications in the field of energy storage.
高压阴极(HVCs)已成为下一代高能量密度钠离子电池(SIBs)研究的关键焦点。克服高性能钠超离子导体(NASICON)在高压(≈4.0 V)下的不可逆相变和容量衰减仍然是一项重大挑战。因此,这项工作采用多元素掺杂方法来设计多增强型NASICON阴极(NaCrMnFeNiVAl(PO),ME-NASICON),实现了高电压、高熵和卓越的循环稳定性。ME-NASICON阴极在0.1 C下具有166.98 mAh/g的显著比容量。受益于高熵构型,它的晶格体积变化极小,仅为1.52%,有效抑制了有害的结构演变,并展现出出色的晶格稳定性。即使在10 C(1.2 A g)的高电流速率下循环2000次后,它仍保留其初始容量的69.07%。此外,与Mn氧化还原活性相关的电压滞后明显减轻,导致平均工作电压升高。最后,ME-NASICON//HC全电池实现了146 mAh/g(12 mA/g)的比容量和347.5 Wh/kg的能量密度。这项研究为SIBs高能量密度和长寿命阴极材料的开发铺平了道路,在储能领域具有广阔的潜在应用前景。