Singh Shubham, Singh Nirpendra, Schwingenschlögl Udo
Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
ACS Appl Mater Interfaces. 2025 Aug 20;17(33):47106-47111. doi: 10.1021/acsami.5c11875. Epub 2025 Aug 11.
We study the experimentally synthesized layered material CsMnBi using first-principles calculations and the linearized electron and phonon Boltzmann transport equations. CsMnBi is found to be a semiconductor with an indirect bandgap of 0.76 eV and to realize C-type antiferromagnetism, which is energetically favorable by 0.19 eV per formula unit over ferromagnetism. Energetical overlap between the acoustic and low-frequency optical phonon modes enhances the phonon-phonon scattering. Combined with low group velocities and high lattice anharmonicity this results in an ultralow lattice thermal conductivity of 0.07 W m K at 300 K. A high thermoelectric figure of merit of 2.2 (1.7) is achieved at 300 K at a hole (electron) density of 6.0 × 10 (1.0 × 10) cm.
我们使用第一性原理计算以及线性化电子和声子玻尔兹曼输运方程来研究实验合成的层状材料CsMnBi。发现CsMnBi是一种间接带隙为0.76 eV的半导体,并实现了C型反铁磁性,相较于铁磁性,每公式单位在能量上更有利0.19 eV。声学和低频光学声子模式之间的能量重叠增强了声子-声子散射。结合低群速度和高晶格非谐性,这导致在300 K时晶格热导率超低,为0.07 W m K。在空穴(电子)密度为6.0×10(1.0×10)cm时,在300 K实现了高达2.2(1.7)的高热电优值。