Divic Stefan, Crépel Valentin, Soejima Tomohiro, Song Xue-Yang, Millis Andrew J, Zaletel Michael P, Vishwanath Ashvin
Department of Physics, University of California, Berkeley, CA 94720.
Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010.
Proc Natl Acad Sci U S A. 2025 Aug 19;122(33):e2426680122. doi: 10.1073/pnas.2426680122. Epub 2025 Aug 12.
We argue that the combination of strong repulsive interactions and high magnetic fields can generate electron pairing and superconductivity. Inspired by the large lattice constants of moiré materials, which make large flux per unit cell accessible at laboratory fields, we study the triangular lattice Hofstadter-Hubbard model at one-quarter flux quantum per plaquette, where previous literature has argued that a chiral spin liquid separates a weak-coupling integer quantum Hall phase and a strong-coupling topologically trivial antiferromagnetic insulator at a density of one electron per site. We argue that topological superconductivity emerges upon doping in the vicinity of the integer quantum Hall to chiral spin liquid transition. We employ exact diagonalization and density matrix renormalization group methods to examine this theoretical scenario and find that electronic pairing indeed occurs on both sides of criticality over a remarkably broad range of interaction strengths. On the chiral spin liquid side, our results provide a concrete model realization of the long-hypothesized mechanism of anyon superconductivity. Our study thus establishes a beyond-Bardeen-Cooper-Schrieffer route to electron pairing in a well-controlled limit, relying crucially on the interplay between electron correlations and band topology.
我们认为,强排斥相互作用和强磁场的结合能够产生电子配对和超导性。受莫尔材料大晶格常数的启发,其使得在实验室磁场下可获得每单位晶胞的大磁通量,我们研究了每格点具有四分之一磁通量子的三角晶格霍夫施塔特 - 哈伯德模型,此前的文献认为,在手征自旋液体将弱耦合整数量子霍尔相和强耦合拓扑平凡反铁磁绝缘体分开的情况下,每格点密度为一个电子。我们认为,在整数量子霍尔向手征自旋液体转变附近进行掺杂时会出现拓扑超导性。我们采用精确对角化和密度矩阵重整化群方法来检验这一理论设想,发现电子配对确实在临界两侧的相当广泛的相互作用强度范围内发生。在手征自旋液体一侧,我们的结果为长期以来假设的任意子超导机制提供了一个具体的模型实现。因此,我们的研究在一个可控的极限下建立了一条超越巴丁 - 库珀 - 施里弗理论的电子配对途径,这关键依赖于电子关联和能带拓扑之间的相互作用。