Suppr超能文献

通过临床验证的生物信息学筛选,以鉴定用于检测包括晚期腺瘤在内的结直肠病变的新型粪便mRNA生物标志物。

Bioinformatic screen with clinical validation for the identification of novel stool based mRNA biomarkers for the detection of colorectal lesions including advanced adenoma.

作者信息

Liu Houcong, Hansen Loren, Song Changpu, Lin Haijiu, Chen Dan, Chen Zhufang, Zhou Hekai, Yang Xiao, Pan Wenying, Du Jihui

机构信息

Research Center for Clinical and Translational Medicine, Central Laboratory, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, 89# Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China.

El Capitan Biosciences, 7068 Koll Center Pkwy, Suite 402, Pleasanton, CA, 94566, USA.

出版信息

Sci Rep. 2025 Aug 11;15(1):29397. doi: 10.1038/s41598-025-13074-4.

Abstract

Messenger RNA (mRNA) stool based biomarkers represent a promising approach for the diagnosis of colorectal cancer (CRC) and advanced adenoma (AA). But it is unclear which mRNA biomarkers have the most clinical utility. This study aims to partially fill this gap by performing an analysis which first ranks genes based on their expression profile in publicly available RNA-seq tissue datasets. Each gene was ranked based on observed differential expression across the majority of tumors as well as the level of expression in tumor tissue. Those genes with strong differential expression across the majority of tumors that were also highly expressed would have a higher ranking. The top 20 genes as ranked in the bioinformatic analysis of tumor and normal colon tissue gene expression were then tested on 114 clinical stool samples (CRC N = 33, AA N = 28, Controls N = 53). Fourteen of the genes had significant differential expression in the stool of CRC patients compared to controls (false discovery rate or FDR < 0.05). The Pearson correlation coefficient between tissue and stool expression was 0.57 (p-value = 0.007). The combined performance of the 20 genes in clinical stool samples had an area under the receiver operator curve (AUC) of 0.94 for CRC detection (sensitivity 75.5%, specificity 95%) and an AUC of 0.83 (sensitivity 55.8%, specificity 92.6%) for AA detection. The ability to use existing public transcriptomic datasets to identify promising candidate genes can substantially reduce the cost and effort required to screen for clinically useful mRNA biomarkers.

摘要

基于信使核糖核酸(mRNA)的粪便生物标志物是诊断结直肠癌(CRC)和高级别腺瘤(AA)的一种很有前景的方法。但尚不清楚哪些mRNA生物标志物具有最大的临床应用价值。本研究旨在通过进行一项分析来部分填补这一空白,该分析首先根据公开可用的RNA测序组织数据集中的基因表达谱对基因进行排名。每个基因根据在大多数肿瘤中观察到的差异表达以及肿瘤组织中的表达水平进行排名。在大多数肿瘤中具有强烈差异表达且同时高表达的基因将获得更高的排名。然后,对肿瘤和正常结肠组织基因表达的生物信息学分析中排名前20的基因在114份临床粪便样本(CRC n = 33,AA n = 28,对照n = 53)上进行测试。与对照相比,其中14个基因在CRC患者的粪便中具有显著差异表达(错误发现率或FDR < 0.05)。组织和粪便表达之间的Pearson相关系数为0.57(p值 = 0.007)。20个基因在临床粪便样本中的综合性能在用于CRC检测时受试者操作特征曲线(AUC)下面积为0.94(敏感性75.5%,特异性95%),用于AA检测时AUC为0.83(敏感性55.8%,特异性92.6%)。利用现有的公共转录组数据集来识别有前景的候选基因的能力可以大幅降低筛选具有临床应用价值的mRNA生物标志物所需的成本和工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验