Hu Fanrui, Zhao Pengnan, Yang Lihuan, Zhao Shishun, Lei Jiayu, Li Weijian, Lai Jiamin, Yu Zhonghai, Park Hanbum, Wong Chengquan, Sharma Raghav, Eda Goki, Yang Shengyuan A, Xu Xiaohong, Wang Fei, Yang Hyunsoo
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, China.
Nat Nanotechnol. 2025 Aug 11. doi: 10.1038/s41565-025-01993-2.
The rapid expansion of self-powered electronics in the Internet of Things, 6G communication and millimetre-wave systems calls for rectifiers capable of operating across ultrabroadband frequencies and at extremely low input power levels. However, conventional rectifiers based on semiconductor junctions face fundamental limitations such as parasitic capacitance and threshold voltages, preventing effective operation under broadband and ambient radio-frequency conditions. Here we present an ultrabroadband, zero-bias rectifier based on the nonlinear Hall effect in wafer-scale (001)-oriented topological crystalline insulator SnTe thin film. This material exhibits a large second-order conductivity of ~0.004 Ω⁻ V⁻, surpassing that of other wafer-scale materials. The nonlinear Hall effect arises primarily from a Berry curvature dipole, evidenced by angular-resolved transport measurements and first-principles calculations. The device demonstrates rectification from 23 MHz to 1 THz, with sensitivity down to -60 dBm in key radio-frequency bands, without any external bias. Rectified output power is scalable through series- and parallel-array topologies and can be enhanced using rectenna designs. As a proof of concept, we achieve the wireless powering of a thermistor using harvested radio-frequency energy, validating the potential of this material platform and nonlinear Hall effect for next-generation energy-autonomous microsystems.
自供电电子设备在物联网、6G通信和毫米波系统中的迅速扩展,要求整流器能够在超宽带频率和极低输入功率水平下工作。然而,基于半导体结的传统整流器面临诸如寄生电容和阈值电压等基本限制,这使得它们在宽带和环境射频条件下无法有效运行。在此,我们展示了一种基于晶圆级(001)取向拓扑晶体绝缘体SnTe薄膜中的非线性霍尔效应的超宽带零偏置整流器。这种材料表现出约0.004 Ω⁻ V⁻的大二阶电导率,超过了其他晶圆级材料。非线性霍尔效应主要源于贝里曲率偶极子,角分辨输运测量和第一性原理计算证实了这一点。该器件在23 MHz至1 THz范围内实现整流,在关键射频频段灵敏度低至-60 dBm,且无需任何外部偏置。整流输出功率可通过串联和并联阵列拓扑进行扩展,并且可以使用整流天线设计来增强。作为概念验证,我们利用收集到的射频能量实现了对热敏电阻的无线供电,验证了这种材料平台和非线性霍尔效应在下一代能量自主微系统中的潜力。