Suppr超能文献

生物电阻抗矢量分析的预测分类和回归模型:来自古巴南部队列的见解。

Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort.

作者信息

Bello Jose Luis García, Luna Taira Batista, Pham-Ho My Phuong, Nguyen Minh Tho, Lafargue Alcibíades Lara, Ciria Héctor Manuel Camué, Zulueta Yohandys A

机构信息

Autonomous University of Santo Domingo (UASD), San Francisco de Macorís Campus, Dominican Republic.

Autonomous University of Santo Domingo (UASD), UASD Nagua Center, Dominican Republic.

出版信息

J Electr Bioimpedance. 2025 Aug 4;16(1):89-98. doi: 10.2478/joeb-2025-0012. eCollection 2025 Jan.

Abstract

This study used predictive models to explore the link between bioparameters at characteristic frequency and their positions within tolerance ellipses in a southern Cuban cohort. The database includes 367 individuals (235 females, 132 males) aged 18-86. Among them, 61 had cancer, while 306 were healthy. After balancing the data, the analysis used 16 bioimpedance-based characteristics along with other anthropometric and location factors. The results showed that characteristic frequency bioparameters (Zc, θc, Xcc, and Rc) are key for assessing health and location. There was a strong agreement between experimental and predicted values for Zc, θc, Xcc, and Rc across various categories. Cancer patients showed higher Zc and slightly lower and Xcc values, attributed to unbalanced body composition and cell membrane deterioration. Females exhibited higher Zc and Xcc values, indicating better cell membrane integrity. Predictions are consistent across quartiles and percentiles, with lower observed in higher quartiles and centiles where more cancer patients are located. Variations in Rc values across different BIVA statuses demonstrated the model's robustness in estimating impedance parameters in diverse physiological conditions. These predictive models are significant for assigning locations without developing BIVA methods, enhancing clinical assessments and health monitoring.

摘要

本研究使用预测模型,探讨了古巴南部一个队列中特征频率下生物参数与其在容差椭圆内位置之间的联系。该数据库包含367名年龄在18 - 86岁之间的个体(235名女性,132名男性)。其中,61人患有癌症,306人健康。在平衡数据后,分析使用了16个基于生物阻抗的特征以及其他人体测量和位置因素。结果表明,特征频率生物参数(Zc、θc、Xcc和Rc)对于评估健康状况和位置至关重要。在各个类别中,Zc、θc、Xcc和Rc的实验值与预测值之间存在很强的一致性。癌症患者显示出较高的Zc值,以及略低的 和Xcc值,这归因于身体成分失衡和细胞膜退化。女性表现出较高的Zc和Xcc值,表明细胞膜完整性更好。预测在四分位数和百分位数之间是一致的,在四分位数和百分位数较高的区域(更多癌症患者所在区域)观察到较低的 。不同生物电阻抗矢量分析(BIVA)状态下Rc值的变化证明了该模型在估计不同生理条件下阻抗参数方面的稳健性。这些预测模型对于在不开发BIVA方法的情况下确定位置具有重要意义,可增强临床评估和健康监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7d4/12337257/989da4ceeddd/j_joeb-2025-0012_fig_001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验