Pradhan Brajabandhu, Kumar Senthil T, Wagner Jessica, Gallardo Rodrigo, Orlando Gabriele, De Vleeschouwer Matthias, Madine Jillian, Louros Nikolas, Neher Jonas J, Rousseau Frederic, Schymkowitz Joost
Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium.
Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
bioRxiv. 2025 Jul 20:2025.07.17.665283. doi: 10.1101/2025.07.17.665283.
Medin, a vascular amyloid derived from MFG-E8, is the most prevalent form of localized human amyloid and co-localizes with Aβ in Alzheimer's disease and, in particular, cerebral amyloid angiopathy (CAA). While it was shown that medin can promote Aβ aggregation, it remains unclear whether this amyloid-amyloid interaction affects the structure of the resulting fibrils. Here, we investigate how medin modulates Aβ40 fibril assembly in vitro using cryo-electron microscopy, aggregation kinetics, and immunogold electron microscopy. We show that medin accelerates Aβ40 aggregation, co-assembles into hybrid fibrils, and modulates fibril morphology. Cryo-EM analysis reveals two fibril populations: one corresponding to a previously described in vitro Aβ40 morphology, and a second, previously unobserved polymorph with Aβ42-like features, including a structured N-terminus and a compact hydrophobic C-terminal core. The presence of a peripheral, unresolved cryo-EM density near the fibril surface suggests that the new polymorph is stabilised through heterotypic interactions, yet the atomic details remain unresolved, likely due to substantial structural heterogeneity. Rather than representing a limitation, this highlights how not all determinants critical for fibril assembly are necessarily ordered or resolvable in the final fibril structure, reflecting the inherent dynamic and heterogeneous nature of amyloid interactions. Our findings provide structural evidence that heterotypic co-aggregation can redirect Aβ40 into distinct conformational states and suggest that dynamic or transient interactions contribute to fibril polymorphism beyond what can be fully captured in static structural models.
Medin是一种源自MFG-E8的血管淀粉样蛋白,是人类局部淀粉样蛋白最普遍的形式,在阿尔茨海默病中,特别是在脑淀粉样血管病(CAA)中,与Aβ共定位。虽然已表明Medin可促进Aβ聚集,但尚不清楚这种淀粉样蛋白-淀粉样蛋白相互作用是否会影响所得纤维的结构。在此,我们使用冷冻电子显微镜、聚集动力学和免疫金电子显微镜研究Medin如何在体外调节Aβ40纤维组装。我们表明,Medin加速Aβ40聚集,共同组装成混合纤维,并调节纤维形态。冷冻电镜分析揭示了两种纤维群体:一种对应于先前描述的体外Aβ40形态,另一种是先前未观察到的具有Aβ42样特征的多晶型物,包括结构化的N端和紧密的疏水C端核心。在纤维表面附近存在未解析的外周冷冻电镜密度,这表明新的多晶型物通过异型相互作用得以稳定,然而原子细节仍未解析,可能是由于大量的结构异质性。这并非局限性,而是突出了并非所有对纤维组装至关重要的决定因素在最终纤维结构中都必然是有序的或可解析的,这反映了淀粉样蛋白相互作用固有的动态和异质性本质。我们的研究结果提供了结构证据,表明异型共聚集可将Aβ40重定向到不同的构象状态,并表明动态或瞬态相互作用对纤维多态性的贡献超出了静态结构模型所能完全捕捉的范围。
bioRxiv. 2025-7-20
Psychopharmacol Bull. 2024-7-8
Autism Adulthood. 2024-12-2
ACS Chem Neurosci. 2024-8-7
IEEE J Transl Eng Health Med. 2025-4-10
Proc Natl Acad Sci U S A. 2025-7-22
Acta Neuropathol. 2025-7-13
Bioinformatics. 2025-2-4
FEBS Open Bio. 2024-11
J Mol Biol. 2024-2-15
Acta Neuropathol Commun. 2023-12-4
Protein Sci. 2023-11