Suppr超能文献

图延拓卷积网络:基于图的显式多尺度机器学习及其在细胞骨架建模中的应用

Graph prolongation convolutional networks: explicitly multiscale machine learning on graphs with applications to modeling of cytoskeleton.

作者信息

Scott Cory B, Mjolsness Eric

机构信息

Department of Computer Science, University of California Irvine, Irvine, California, United States of America.

出版信息

Mach Learn Sci Technol. 2021 Mar;2(1). doi: 10.1088/2632-2153/abb6d2. Epub 2020 Dec 1.

Abstract

We define a novel type of ensemble graph convolutional network (GCN) model. Using optimized linear projection operators to map between spatial scales of graph, this ensemble model learns to aggregate information from each scale for its final prediction. We calculate these linear projection operators as the infima of an objective function relating the structure matrices used for each GCN. Equipped with these projections, our model (a Graph Prolongation-Convolutional Network) outperforms other GCN ensemble models at predicting the potential energy of monomer subunits in a coarse-grained mechanochemical simulation of microtubule bending. We demonstrate these performance gains by measuring an estimate of the Floating Point OPerations spent to train each model, as well as wall-clock time. Because our model learns at multiple scales, it is possible to train at each scale according to a predetermined schedule of coarse vs. fine training. We examine several such schedules adapted from the algebraic multigrid literature, and quantify the computational benefit of each. We also compare this model to another model which features an optimized coarsening of the input graph. Finally, we derive backpropagation rules for the input of our network model with respect to its output, and discuss how our method may be extended to very large graphs.

摘要

我们定义了一种新型的集成图卷积网络(GCN)模型。该集成模型使用优化的线性投影算子在图的空间尺度之间进行映射,从而学习从每个尺度聚合信息以进行最终预测。我们将这些线性投影算子计算为与每个GCN所使用的结构矩阵相关的目标函数的下确界。配备这些投影后,我们的模型(图延拓卷积网络)在预测微管弯曲的粗粒度机械化学模拟中单体亚基的势能方面优于其他GCN集成模型。我们通过测量训练每个模型所花费的浮点运算估计值以及挂钟时间来证明这些性能提升。由于我们的模型在多个尺度上进行学习,因此可以根据粗粒度与细粒度训练的预定时间表在每个尺度上进行训练。我们研究了从代数多重网格文献中改编的几个这样的时间表,并量化了每个时间表的计算优势。我们还将此模型与另一个具有优化输入图粗化功能的模型进行了比较。最后,我们推导了网络模型输入相对于其输出的反向传播规则,并讨论了我们的方法如何扩展到非常大的图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/705e/12338120/b9b0ea36e7f2/nihms-2040663-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验