Pula Michal, Kucharczyk Emilia, Piersiak Marcin, Ziomek Maciej, Zdanowicz-Ratajczyk Agata, Guzinski Maciej
Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University Hospital, Wrocław, Poland.
Wroclaw Medical University, Wrocław, Poland.
Neuroradiology. 2025 Aug 12. doi: 10.1007/s00234-025-03733-8.
This study compares a novel reconstruction algorithm deep learning-based image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) for CTA in acute ischemic stroke (AIS) patients, emphasizing DLIR's potential to improve diagnostic accuracy and visualization of large vessel occlusion.
This study retrospectively assessed 108 consecutive AIS-suspected emergency department patients (mean age 72.3 years +/- 17) who underwent head and neck CTA with DLIR and ASIR-V reconstructions. The analysis compared the impact of DLIR versus ASIR-V on image quality, assessing signal-to-noise (SNR), contrast-to-noise ratios (CNR), and contrast-enhanced arteries homogeneity computed on mean HU values and SD in six regions of interest located in head and neck including three arteries.
The DLIR reconstruction allowed for significant SNR and CNR improvement, with the largest SNR distinction obtained in the common carotid artery (52.29% increased SNR) and white matter of the pons (63.98% increased SNR). Among the three regions subject to CNR evaluation DLIR yielded superiority in the neck and posterior cerebral fossa while ASIR-V accounted for higher CNR in the medial cerebral fossa (MCF). Additionally, DLIR-reconstructed images achieved a 21.10% improvement in arterial homogeneity, enhancing the visualization of potential occlusion.
DLIR yields superior image quality of the contrast-enhanced head and neck structures in CTA, providing artery images with increased homogeneity and potentially allowing for more proficient occlusion evaluation specifically in the area of the posterior cerebral fossa. However, this technique faces challenges in the visualization of MCF.
本研究比较了一种基于深度学习的新型重建算法(深度学习图像重建,DLIR)和自适应统计迭代重建-Veo(ASIR-V)在急性缺血性卒中(AIS)患者CTA中的应用,重点关注DLIR在提高大血管闭塞诊断准确性和可视化方面的潜力。
本研究回顾性评估了108例连续的疑似AIS的急诊科患者(平均年龄72.3岁±17岁),这些患者接受了采用DLIR和ASIR-V重建的头颈部CTA检查。分析比较了DLIR与ASIR-V对图像质量的影响,评估了位于头颈部包括三条动脉的六个感兴趣区域的平均HU值和标准差计算得出的信噪比(SNR)、对比噪声比(CNR)以及对比增强动脉的均匀性。
DLIR重建显著提高了SNR和CNR,在颈总动脉(SNR增加52.29%)和脑桥白质(SNR增加63.98%)中获得了最大的SNR差异。在接受CNR评估的三个区域中,DLIR在颈部和后颅窝表现出优势,而ASIR-V在内侧颅窝(MCF)的CNR更高。此外,DLIR重建的图像在动脉均匀性方面提高了21.10%,增强了潜在闭塞的可视化。
DLIR在CTA中产生了更高质量的对比增强头颈部结构图像,提供了具有更高均匀性的动脉图像,并可能在特别是后颅窝区域实现更熟练的闭塞评估。然而,该技术在MCF的可视化方面面临挑战。