Suppr超能文献

结合双能谱CT中的低能量图像与深度学习图像重建算法以提高下腔静脉图像质量

Combining Low-energy Images in Dual-energy Spectral CT With Deep Learning Image Reconstruction Algorithm to Improve Inferior Vena Cava Image Quality.

作者信息

Wei Wei, Jia Yongjun, Li Ming, Yu Nan, Dang Shan, Geng Jian, Han Dong, Yu Yong, Zheng Yunsong, Fan Lihua

机构信息

Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine.

School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.

出版信息

J Comput Assist Tomogr. 2025;49(4):604-610. doi: 10.1097/RCT.0000000000001713. Epub 2025 Jan 27.

Abstract

OBJECTIVE

To explore the application of low-energy image in dual-energy spectral CT (DEsCT) combined with deep learning image reconstruction (DLIR) to improve inferior vena cava imaging.

MATERIALS AND METHODS

Thirty patients with inferior vena cava syndrome underwent contrast-enhanced upper abdominal CT with routine dose, and the 40, 50, 60, 70, and 80 keV images in the delayed phase were first reconstructed with the ASiR-V40% algorithm. Image quality was evaluated both quantitatively [CT value, SD, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) for inferior vena cava] and qualitatively to select an optimal energy level with the best image quality. Then, the optimal-energy images were reconstructed again using deep learning image reconstruction medium strength (DLIR-M) and DLIR-H (high strength) algorithms and compared with that of ASiR-V40%.

RESULTS

The objective CT value, SD, SNR, and CNR increased with the decrease in energy level, with statistically significant differences (all P <0.05). The 40 keV images had the highest CT values, SNR, and CNR and good diagnostic acceptability, and 40 keV was selected as the best energy level. Compared with ASiR-V40% and DLIR-M, DLIR-H had the lowest SD, highest SNR and CNR, and subjective score (all P <0.001) with good consistencies between the 2 physicians (all k ≥0.75). The 40 keV images with DLIR-H had the highest overall image quality, showing sharper edges of inferior vena cava vessels and clearer lumen in patients with Budd-Chiari syndrome.

CONCLUSIONS

Compared with the ASiR-V algorithm, DLIR-H significantly reduces image noise and provides the highest CNR and best diagnostic image quality for the 40 keV DEsCT images in imaging inferior vena cava.

摘要

目的

探讨低能量图像在双能谱CT(DEsCT)联合深度学习图像重建(DLIR)中的应用,以改善下腔静脉成像。

材料与方法

30例下腔静脉综合征患者接受常规剂量的上腹部增强CT检查,首先采用ASiR-V40%算法重建延迟期40、50、60、70和80 keV图像。对图像质量进行定量评估(下腔静脉的CT值、标准差、信噪比(SNR)和对比噪声比(CNR))和定性评估,以选择图像质量最佳的最佳能量水平。然后,使用深度学习图像重建中等强度(DLIR-M)和高强度(DLIR-H)算法再次重建最佳能量图像,并与ASiR-V40%的图像进行比较。

结果

客观CT值、标准差、SNR和CNR随能量水平的降低而升高,差异有统计学意义(均P<0.05)。40 keV图像的CT值、SNR和CNR最高,诊断可接受性良好,选择40 keV作为最佳能量水平。与ASiR-V40%和DLIR-M相比,DLIR-H的标准差最低,SNR和CNR最高,主观评分最高(均P<0.001),两位医师之间的一致性良好(均k≥0.75)。采用DLIR-H的40 keV图像总体图像质量最高,显示布加综合征患者下腔静脉血管边缘更清晰,管腔更清晰。

结论

与ASiR-V算法相比,DLIR-H显著降低图像噪声,为40 keV DEsCT下腔静脉成像提供最高的CNR和最佳的诊断图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99f2/12237118/688e5a963073/rct-49-604-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验