Department of Radiology, Veterans Health Service Medical Center, 53 Jinhwangdo-ro 61-gil, Gangdong-gu, Seoul, 05368, South Korea.
Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
Neuroradiology. 2021 Jun;63(6):905-912. doi: 10.1007/s00234-020-02574-x. Epub 2020 Oct 10.
To compare the image quality of brain computed tomography (CT) images reconstructed with deep learning-based image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V).
Sixty-two patients underwent routine noncontrast brain CT scans and datasets were reconstructed with 30% ASIR-V and DLIR with three selectable reconstruction strength levels (low, medium, high). Objective parameters including CT attenuation, noise, noise reduction rate, artifact index of the posterior cranial fossa, and contrast-to-noise ratio (CNR) were measured at the levels of the centrum semiovale and basal ganglia. Subjective parameters including gray matter-white matter differentiation, sharpness, and overall diagnostic quality were also assessed and compared with the interobserver agreement.
There was a gradual reduction in the image noise and artifact index of the posterior cranial fossa as the strength levels of DLIR increased (all P < 0.001) compared with that of ASIR-V. CNR in both the centrum semiovale and basal ganglia levels also improved from the low to high strength levels of DLIR compared with that of ASIR-V (all P < 0.001). DLIR images with medium and high strength levels demonstrated the best subjective image quality scores among the reconstruction datasets. There was moderate to good interobserver agreement for the subjective image quality assessments with ASIR-V and DLIR.
On routine brain CT scans, optimized protocols with DLIR allowed significant reduction of noise and artifacts with improved subjective image quality compared with ASIR-V.
比较基于深度学习的图像重建(DLIR)和自适应统计迭代重建-Veo(ASIR-V)重建的脑 CT 图像的质量。
62 例患者行常规非增强脑 CT 扫描,采用 30%ASIR-V 和 DLIR 对数据集进行重建,有 3 种可选重建强度水平(低、中、高)。在半卵圆中心和基底节水平测量 CT 衰减、噪声、降噪率、颅后窝伪影指数和对比噪声比(CNR)等客观参数。还评估了灰度值-白质分化、清晰度和整体诊断质量等主观参数,并与观察者间一致性进行比较。
与 ASIR-V 相比,随着 DLIR 强度水平的增加,图像噪声和颅后窝伪影指数逐渐降低(均 P<0.001)。与 ASIR-V 相比,在半卵圆中心和基底节水平的 CNR 也随着 DLIR 强度水平的增加而提高(均 P<0.001)。与 ASIR-V 相比,DLIR 中、高强度水平的图像具有最佳的主观图像质量评分。ASIR-V 和 DLIR 的主观图像质量评估具有中度至良好的观察者间一致性。
在常规脑 CT 扫描中,与 ASIR-V 相比,优化后的 DLIR 方案可显著降低噪声和伪影,提高主观图像质量。