Han Wei, Huang Bo, Zhu Jiahong, Zou Jiayi, Xue Xia, Yao Yufei, Jin Lei, Ma Yanlin, Shi Juanzi, Huang Guoning
Center for Reproductive Medicine, Women and Children's Hospital & Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Medical University, Chongqing, China.
Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
J Assist Reprod Genet. 2025 Aug 12. doi: 10.1007/s10815-025-03570-x.
To evaluate whether the use of a fully automated AI-based scoring system (iDAScore V2) for selecting viable embryos using fetal heartbeat (FHB) as an indicator is equivalent to morphology assessment.
A retrospective observational cohort study across four fertility centers analyzed embryos selected for single embryo transfer on Day 3 or Day 5 + based on morphology and time-lapse video. All transferred embryos from participating centers were retrospectively scored using a fully automated AI-based embryo scoring algorithm and standardized morphology assessment. The predictive ability of both methods for implantation (FHB rate) was compared for Day 3 and Day 5 + transfer.
A multi-center analysis revealed that AI-based embryo scoring significantly outperformed morphological embryo assessment in predicting FHB for both Day 3 (n = 2965) and Day 5 + (n = 6970) transfers (P < 0.0001). Similarly, the discrimination of low versus high scores regarding FHB resulted in a significantly better area under the curve (AUC) for iDAScore V2 compared to standardized morphology assessment for Day 3 (0.63; 95% CI: 0.61-0.65 versus 0.59; 95% CI: 0.58-0.61) and for Day 5 + (0.59; 95% CI: 0.57-0.60 versus 0.55; 95% CI: 0.54-0.57).
As a multi-center validation of fully automated embryo assessment, this study confirms that AI-based selection provides outcomes that are either equivalent to or superior to morphological embryo assessment, without compromising clinical outcomes.
评估使用基于人工智能的全自动评分系统(iDAScore V2)以胎儿心跳(FHB)为指标选择可存活胚胎是否等同于形态学评估。
一项针对四个生育中心的回顾性观察队列研究,分析了基于形态学和延时视频在第3天或第5天+选择用于单胚胎移植的胚胎。使用基于人工智能的全自动胚胎评分算法和标准化形态学评估对参与中心的所有移植胚胎进行回顾性评分。比较了这两种方法对第3天和第5天+移植的着床(FHB率)的预测能力。
多中心分析显示,基于人工智能的胚胎评分在预测第3天(n = 2965)和第5天+(n = 6970)移植的FHB方面显著优于形态学胚胎评估(P < 0.0001)。同样,对于FHB的低分与高分判别,与标准化形态学评估相比,iDAScore V2在第3天(0.63;95%CI:0.61 - 0.65对0.59;95%CI:0.58 - 0.61)和第5天+(0.59;95%CI:0.57 - 0.60对0.55;95%CI:0.54 - 0.57)的曲线下面积(AUC)显著更好。
作为全自动胚胎评估的多中心验证,本研究证实基于人工智能的选择提供的结果等同于或优于形态学胚胎评估且不影响临床结局。