Suppr超能文献

QCNN-Swin-UNet:集成优化Swin-UNet的量子卷积神经网络,用于边缘设备上的高效肝脏肿瘤分割与分类

QCNN-Swin-UNet: Quantum Convolutional Neural Network Integrated with Optimized Swin-UNet for Efficient Liver Tumor Segmentation and Classification on Edge Devices.

作者信息

Idress Wail M, Zhao Yuqian, Abouda Khalid A, Elhag Hiba M

机构信息

School of Automation, Central South University, Changsha, 410083, China.

Department of Electrical and Electronic Engineering, Omdurman Islamic University, Omdurman, 14415, Sudan.

出版信息

J Imaging Inform Med. 2025 Aug 12. doi: 10.1007/s10278-025-01630-3.

Abstract

Accurate segmentation and classification of liver tumors are crucial for early diagnosis and effective treatment planning. However, conventional deep learning models such as tumor heterogeneity, class imbalance, and high computational demands face challenges, limiting their clinical deployment. This study introduces a lightweight hybrid framework combining an optimized Swin-UNet for segmentation with a Quantum Convolutional Neural Network (QCNN) for classification. The Swin-UNet is enhanced using a metaheuristic Search and Rescue (SAR) algorithm and a quadratic penalty-based objective function to balance compactness and accuracy. A Focal AUC loss function addresses class imbalance and improves sensitivity to minority regions. The QCNN leverages quantum-inspired mechanisms such as entanglement and superposition to achieve superior performance with reduced parameters. Evaluated on three benchmark datasets (3D-IRCADb, LiTS17, and MSD Task03), the framework achieves Dice scores of 85.8%, 88.7%, and 88.4%, respectively, alongside 96.7% classification accuracy. The model size is reduced to 64.16 MB, enabling real-time inference on edge devices (Jetson Nano). The QCNN classifier outperforms traditional CNNs in all metrics, demonstrating its effectiveness in high-dimensional medical data analysis. This work bridges the gap between diagnostic precision and computational efficiency, presenting a clinically viable AI solution for liver tumor analysis.

摘要

肝脏肿瘤的准确分割和分类对于早期诊断和有效的治疗规划至关重要。然而,传统的深度学习模型面临着肿瘤异质性、类别不平衡和高计算需求等挑战,限制了它们的临床应用。本研究引入了一种轻量级混合框架,该框架将用于分割的优化Swin-UNet与用于分类的量子卷积神经网络(QCNN)相结合。使用元启发式搜索与救援(SAR)算法和基于二次惩罚的目标函数对Swin-UNet进行增强,以平衡紧凑性和准确性。焦点AUC损失函数解决了类别不平衡问题,并提高了对少数区域的敏感性。QCNN利用量子纠缠和叠加等启发式机制,以减少参数的方式实现卓越性能。在三个基准数据集(3D-IRCADb、LiTS17和MSD Task03)上进行评估,该框架分别实现了85.8%、88.7%和88.4%的骰子系数,以及96.7%的分类准确率。模型大小减少到64.16MB,能够在边缘设备(Jetson Nano)上进行实时推理。QCNN分类器在所有指标上均优于传统的卷积神经网络,证明了其在高维医学数据分析中的有效性。这项工作弥合了诊断精度和计算效率之间的差距,为肝脏肿瘤分析提供了一种临床上可行的人工智能解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验