Zhou Weijun, Strmšek Žiga, Snoj Jaka, Škarabot Miha, Jerala Roman
Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, SI-1001, Slovenia.
Condensed Matter Department, J. Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia.
Small. 2025 Jul;21(30):e2502060. doi: 10.1002/smll.202502060. Epub 2025 May 29.
The integration of DNA and protein-designed nanostructures represents a transformative approach to the development of programmable biopolymers for nanoscale construction. While DNA nanostructures excel in the readily programmable precision and scalability of base pairing, protein assemblies exploit the chemical diversity of amino acids for greater functional versatility. Here a platform is presented that unifies these two paradigms by combining coiled-coil protein origami with DNA nanostructures through orthogonal protein-protein (SpyCatcher-SpyTag) and protein-DNA (DCV-DNA) covalent conjugation strategies. This dual-functionalization strategy enables the construction of stable and versatile protein-DNA composites capable of hierarchical self-assembly. This shows that these composites drive the transformation of DNA nanotubes into large-scale, patterned nanofibers or nanorods, with the proteins regularly distributed over their surface and retaining their enzymatic and fluorescent functions. In addition, a DNA-luciferase circuit is developed through split enzyme reconstitution to achieve reversible regulation of enzymatic activity, highlighting the dynamic functionality of these composites. This introduces a modular approach to producing multifunctional bio-nanomaterials, highlighting the potential of protein-DNA composite nanostructures as a bridge between molecular design and functional nanomaterials and paves the way for the development of dynamic bio-devices and programmable biomaterials.
DNA与蛋白质设计的纳米结构的整合代表了一种变革性方法,用于开发用于纳米级构建的可编程生物聚合物。虽然DNA纳米结构在碱基配对的易于编程的精度和可扩展性方面表现出色,但蛋白质组装利用氨基酸的化学多样性实现了更大的功能通用性。本文介绍了一个平台,该平台通过正交蛋白质-蛋白质(SpyCatcher-SpyTag)和蛋白质-DNA(DCV-DNA)共价共轭策略,将卷曲螺旋蛋白质折纸与DNA纳米结构相结合,统一了这两种范式。这种双功能化策略能够构建能够进行分层自组装的稳定且通用的蛋白质-DNA复合材料。这表明这些复合材料可将DNA纳米管转化为大规模、有图案的纳米纤维或纳米棒,蛋白质在其表面规则分布并保留其酶促和荧光功能。此外,通过分裂酶重组开发了一种DNA-荧光素酶电路,以实现酶活性的可逆调节,突出了这些复合材料的动态功能。这引入了一种生产多功能生物纳米材料的模块化方法,突出了蛋白质-DNA复合纳米结构作为分子设计与功能纳米材料之间桥梁的潜力,并为动态生物器件和可编程生物材料的开发铺平了道路。