Suppr超能文献

用于超薄牙贴面的高强度数字光处理打印氧化锆

High-strength DLP-printed zirconia for ultra-thin dental veneers.

作者信息

Zhao Wuyuan, Sun Jinxing, Ding Hao, Manzoor Sadia, Yu Hao, Bai Jiaming, Tsoi James K H

机构信息

Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.

School of Advanced Manufacturing, Sun Yat-sen University, Shenzhen 518107, PR China.

出版信息

Dent Mater. 2025 Aug 11. doi: 10.1016/j.dental.2025.08.005.

Abstract

OBJECTIVES

To evaluate the feasibility of utilizing Digital Light Processing (DLP) 3D-printing technology to fabricate ultra-thin (0.1-0.7 mm) zirconia dental veneers.

MATERIALS AND METHODS

A high-load (80 wt%) 3Y-zirconia slurry (5 Pa·s at a shear rate of 30 s) was used to print zirconia green bodies with a custom-made DLP 3D-printer (405 nm UV light and X/Y plane resolution of 70 μm). Flexural strengths of green bodies and fully sintered zirconia printed in two orientations (0º and 90º) were evaluated using three-point bending (3PB) and biaxial flexural strength (BFS) tests, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to examine the microstructure and crystalline phases of the sintered specimens. A commercial 3Y-zirconia (UPCERA MT) was used as a control for comparison with the best-performing DLP-printed specimens. XRD and SEM were used to assess low-temperature degradation (LTD) after artificial aging (autoclave, 5 hr). Transparency of the sintered DLP-printed and conventional zirconia at 0.5 mm and 1.0 mm thicknesses was measured using a desktop spectrophotometer (400-700 nm). Resin-zirconia bonding performance was evaluated via shear bond strength (SBS) testing and failure mode analysis. SBS was measured between a self-adhesive dual-curing resin cement and the surface of sintered zirconia specimens. The coefficient of thermal expansion (CTE) and Schwickerath three-point bending strength (τ) were measured to evaluate porcelain-zirconia compatibility. Ultra-thin (0.1-0.7 mm) dental restorations were fabricated to demonstrate the practical potential application of this novel zirconia printing approach.

RESULTS

The 3PB flexural strength of green bodies printed at 0º (21.35 ± 2.19 MPa) was significantly higher (p < 0.05) than at 90º (16.98 ± 1.68 MPa). The BFS of sintered zirconia printed at 0º (1040.33 ± 236.70 MPa) was also significantly higher (p < 0.05) than at 90º (685.91 ± 139.10 MPa). Sintered specimens printed at 0º exhibited an average grain size of 440 nm and a tetragonal phase. After artificial aging, the DLP-printed group exhibited superior resistance to LTD, with a lower monoclinic phase content (40.78 %) compared to the commercial zirconia group (72.51 %). DLP-printed zirconia exhibited lower transparency than commercial zirconia at both 0.5 mm (23.22 ± 1.55 % vs. 35.67 ± 0.14 %) and 1.0 mm (12.04 ± 1.45 % vs. 28.06 ± 0.25 %) thicknesses. Although the commercial zirconia group showed higher average SBS (12.43 ± 6.66 MPa), the difference was not statistically significant compared to the DLP-printed group (7.86 ± 5.69 MPa). Adhesive failure was the predominant failure mode in both groups. CTE of DLP-printed zirconia (10.56 ×10/ºC) was comparable to conventional zirconia (10.50 ×10/ºC). The τ of DLP-printed zirconia (26.37 ± 2.37 MPa) was significantly lower (p < 0.05) than that of the conventional zirconia (33.47 ± 3.37 MPa), but both exceeded the ISO 9693:2019 minimal requirement of 20 MPa. Ultra-thin (0.1-0.7 mm) dental veneers were successfully fabricated using the DLP technique.

CONCLUSIONS

The DLP technique enables successful fabrication of ultra-thin (0.1-0.7 mm) zirconia dental veneers, with printing orientation significantly influencing the strength of both green and sintered specimens.

摘要

目的

评估利用数字光处理(DLP)3D打印技术制造超薄(0.1 - 0.7毫米)氧化锆牙科贴面的可行性。

材料与方法

使用高负载(80重量%)的3Y - 氧化锆浆料(在30秒剪切速率下为5帕斯卡·秒),通过定制的DLP 3D打印机(405纳米紫外光,X/Y平面分辨率为70微米)打印氧化锆生坯。分别使用三点弯曲(3PB)和双轴弯曲强度(BFS)测试评估以两种方向(0°和90°)打印的生坯和完全烧结氧化锆的弯曲强度。使用扫描电子显微镜(SEM)和X射线衍射(XRD)检查烧结试样的微观结构和晶相。使用商用3Y - 氧化锆(UPCERA MT)作为对照,与性能最佳的DLP打印试样进行比较。使用XRD和SEM评估人工老化(高压釜,5小时)后的低温降解(LTD)。使用台式分光光度计(400 - 700纳米)测量0.5毫米和1.0毫米厚度的烧结DLP打印氧化锆和传统氧化锆的透明度。通过剪切粘结强度(SBS)测试和失效模式分析评估树脂 - 氧化锆粘结性能。测量自粘结双固化树脂粘结剂与烧结氧化锆试样表面之间的SBS。测量热膨胀系数(CTE)和施维克拉特三点弯曲强度(τ)以评估瓷 - 氧化锆相容性。制造超薄(0.1 - 0.7毫米)牙科修复体以展示这种新型氧化锆打印方法的实际潜在应用。

结果

在0°打印的生坯的3PB弯曲强度(21.35±2.19兆帕)显著高于(p < 0.05)在90°打印的生坯(16.98±1.68兆帕)。在0°打印的烧结氧化锆的BFS(1040.33±236.70兆帕)也显著高于(p < 0.05)在90°打印的烧结氧化锆(685.91±139.10兆帕)。在0°打印的烧结试样平均晶粒尺寸为440纳米且为四方相。人工老化后,DLP打印组表现出对LTD的优异抗性,与商用氧化锆组(72.51%)相比,单斜相含量较低(40.78%)。在0.5毫米(23.22±1.55%对35.67±0.14%)和1.0毫米(12.04±1.45%对28.06±0.25%)厚度下,DLP打印的氧化锆的透明度均低于商用氧化锆。尽管商用氧化锆组显示出更高的平均SBS(12.43±6.66兆帕),但与DLP打印组(7.86±5.69兆帕)相比,差异无统计学意义。两组中粘结失败均为主要失效模式。DLP打印氧化锆的CTE(10.56×10⁻⁶/℃)与传统氧化锆(10.50×10⁻⁶/℃)相当。DLP打印氧化锆的τ(26.37±2.37兆帕)显著低于(p < 0.05)传统氧化锆(33.47±3.37兆帕),但两者均超过ISO 9693:2019的最低要求20兆帕。使用DLP技术成功制造了超薄(0.1 - 0.7毫米)牙科贴面。

结论

DLP技术能够成功制造超薄(0.1 - 0.7毫米)氧化锆牙科贴面,打印方向对生坯和烧结试样的强度有显著影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验