Suppr超能文献

留兰香染色体水平的基因组组装

Genome assembly at the chromosome level of Clinopodium barosmum.

作者信息

Luo Shujie, Yang Ya, Yang Xingyu, Li Zhifang, Liu Tianmeng, Hu Xiaokang, Huang Jian

机构信息

College of Agriculture and Biological Science, Dali University, Dali, Yunnan, 671003, China.

Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali, Yunnan, 671003, China.

出版信息

Sci Data. 2025 Aug 12;12(1):1406. doi: 10.1038/s41597-025-05784-1.

Abstract

Clinopodium barosmum (C. barosmum), a rare species within the genus Clinopodium of the Lamiaceae family in northwestern Yunnan, is highly valued for its exceptional ecological and medicinal properties. This study presents the successful assembly of the chromosome-level genome of C. barosmum utilizing Nanopore sequencing technology and chromosome conformation capture techniques. The assembled genome spans 518.59 Mb, with a scaffold N50 length of 21.12 Mb. Notably, 99.97% of the genomic data (518.42 Mb) was accurately anchored and assigned to 24 chromosomes. Analysis revealed a high proportion of repetitive sequences, comprising approximately 51.81% of the genome, and identified 41,864 protein-coding genes. Furthermore, a comparative genomic analysis was conducted, establishing a robust foundation and providing valuable reference data for future investigations of C. barosmum.

摘要

滇西香薷(Clinopodium barosmum)是唇形科香薷属的一种珍稀植物,分布于云南西北部,因其独特的生态和药用价值而备受关注。本研究利用纳米孔测序技术和染色体构象捕获技术成功组装了滇西香薷的染色体水平基因组。组装后的基因组大小为518.59 Mb,支架N50长度为21.12 Mb。值得注意的是,99.97%的基因组数据(518.42 Mb)被准确锚定到24条染色体上。分析显示,重复序列占基因组的比例较高,约为51.81%,并鉴定出41,864个蛋白质编码基因。此外,还进行了比较基因组分析,为滇西香薷的未来研究奠定了坚实基础并提供了有价值的参考数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ada0/12343969/5a4e6da55f4d/41597_2025_5784_Fig1_HTML.jpg

相似文献

1
Genome assembly at the chromosome level of Clinopodium barosmum.
Sci Data. 2025 Aug 12;12(1):1406. doi: 10.1038/s41597-025-05784-1.
4
Chromosome-level genome assembly of Nothapodytes nimmoniana.
Sci Data. 2025 Jul 8;12(1):1158. doi: 10.1038/s41597-025-05484-w.
5
Chromosome-level genome assembly of Sinocyclocheilus jii based on PacBio HiFi and Hi-C sequencing.
Sci Data. 2025 Jul 26;12(1):1303. doi: 10.1038/s41597-025-05663-9.
6
A chromosome-level genome assembly and annotation of Cercis chuniana (Fabaceae).
Sci Data. 2025 Jul 8;12(1):1163. doi: 10.1038/s41597-025-05501-y.
7
A high-quality chromosome-scale genome assembly of the Cherokee rose (Rosa laevigata).
Sci Data. 2025 Jan 22;12(1):132. doi: 10.1038/s41597-025-04461-7.
8
Chromosome-level Genome Assembly of the Halophytic Turfgrass Zoysia macrostachya.
Sci Data. 2025 Jul 31;12(1):1335. doi: 10.1038/s41597-025-05702-5.
9
Chromosome-level genome assembly of Hippophae salicifolia.
Sci Data. 2025 Aug 28;12(1):1503. doi: 10.1038/s41597-025-05844-6.
10
Chromosomal level genome assembly of medicinal plant Chrysosplenium macrophyllum.
Sci Data. 2025 Jul 15;12(1):1224. doi: 10.1038/s41597-025-05546-z.

本文引用的文献

1
Chromosome-level genome assembly of Hippophae rhamnoides variety.
Sci Data. 2024 Jul 13;11(1):776. doi: 10.1038/s41597-024-03549-w.
2
Rapid and sensitive detection of genome contamination at scale with FCS-GX.
Genome Biol. 2024 Feb 26;25(1):60. doi: 10.1186/s13059-024-03198-7.
3
Research progress on the hypoglycemic activity and mechanisms of natural polysaccharides.
Int J Biol Macromol. 2023 Dec 1;252:126199. doi: 10.1016/j.ijbiomac.2023.126199. Epub 2023 Aug 9.
4
[Research progress on genus Clinopodium].
Zhongguo Zhong Yao Za Zhi. 2020 Sep;45(18):4349-4357. doi: 10.19540/j.cnki.cjcmm.20200604.601.
5
Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies.
Genome Biol. 2020 Sep 14;21(1):245. doi: 10.1186/s13059-020-02134-9.
6
TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data.
Mol Plant. 2020 Aug 3;13(8):1194-1202. doi: 10.1016/j.molp.2020.06.009. Epub 2020 Jun 23.
7
DeepTE: a computational method for de novo classification of transposons with convolutional neural network.
Bioinformatics. 2020 Aug 1;36(15):4269-4275. doi: 10.1093/bioinformatics/btaa519.
8
Identifying and removing haplotypic duplication in primary genome assemblies.
Bioinformatics. 2020 May 1;36(9):2896-2898. doi: 10.1093/bioinformatics/btaa025.
10
Improved metagenomic analysis with Kraken 2.
Genome Biol. 2019 Nov 28;20(1):257. doi: 10.1186/s13059-019-1891-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验