Suppr超能文献

基于WDCNN-BiLSTM连体网络的小样本条件下滚动轴承故障诊断

Rolling bearing fault diagnosis under small sample conditions based on WDCNN-BiLSTM Siamese network.

作者信息

Bian Chenxu, Jia Chunni, Li Jibo, Chen Xiangjun, Wang Pei

机构信息

School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China.

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.

出版信息

Sci Rep. 2025 Aug 12;15(1):29591. doi: 10.1038/s41598-025-12370-3.

Abstract

Rolling bearings are a crucial component in rotating machinery, essential for ensuring the smooth functioning of the entire system. However, their vulnerability to damage necessitates the implementation of effective fault diagnosis. Traditional deep learning methods often struggle due to the scarcity of fault samples, leading to issues like overfitting and inadequate generalization. To address this problem, a novel Siamese Neural Network (SNN) model, integrating Deep Convolutional Neural Networks with Wide First-layer Kernel (WDCNN) and Bidirectional Long Short-Term Memory (BiLSTM) network is proposed. This model constructs a feature extraction system that combines WDCNN and BiLSTM to extract local spatial features and global temporal dependencies from vibration signals. Additionally, the SNN framework is introduced to build a feature space under small sample conditions through metric learning, enhancing the ability of model to discern sample similarities. Experiments on the CWRU and HUST datasets indicate that with only 90 training samples, the model achieves diagnostic accuracy of 83.47% and 61.48%, respectively, significantly surpassing CNN, BiLSTM, and their combined models. Furthermore, the model also shows robustness against severe noise interference, making it a viable tool for efficient fault diagnosis in rolling bearings with limited data.

摘要

滚动轴承是旋转机械中的关键部件,对于确保整个系统的平稳运行至关重要。然而,它们容易受到损坏,因此需要实施有效的故障诊断。传统的深度学习方法由于故障样本稀缺,往往难以应对,导致诸如过拟合和泛化不足等问题。为了解决这个问题,提出了一种新颖的暹罗神经网络(SNN)模型,该模型将具有宽第一层内核的深度卷积神经网络(WDCNN)与双向长短期记忆(BiLSTM)网络相结合。该模型构建了一个特征提取系统,将WDCNN和BiLSTM相结合,从振动信号中提取局部空间特征和全局时间依赖性。此外,引入了SNN框架,通过度量学习在小样本条件下构建特征空间,增强了模型辨别样本相似性的能力。在CWRU和HUST数据集上的实验表明,仅使用90个训练样本,该模型的诊断准确率分别达到83.47%和61.48%,显著超过了CNN、BiLSTM及其组合模型。此外,该模型还表现出对严重噪声干扰的鲁棒性,使其成为在数据有限的情况下对滚动轴承进行高效故障诊断的可行工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5074/12343799/02210e193d5e/41598_2025_12370_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验