Suppr超能文献

基于迁移学习的女性乳腺癌患者抑郁检测模型构建:文本情感分析

Construction of a transfer learning-based depression detection model for female breast cancer patients: text sentiment analysis.

作者信息

Fu Jiaqi, Deng Shisi, Zheng Wanting, Zheng Chunrao, Liu Jianhong, Li Wenji, Zeng Yinghua, Xie Hongpo, Mai Yuchang, Li Chaixiu, Lai Jie, Zhang Yujie, Guo Zihan, Tang Jianyao, Zhong Chuhan, Zhao Huihui, Wu Yanni

机构信息

Nanfang Hospital, Southern Medical University, Guangzhou, China.

School of Nursing, Southern Medical University, Guangzhou, China.

出版信息

BMC Cancer. 2025 Aug 12;25(1):1307. doi: 10.1186/s12885-025-14650-7.

Abstract

BACKGROUND

Social networks have become a vital space for breast cancer (BC) patients to share deeply personal emotions they might avoid expressing in real life. However, the unstructured and vast nature of these textual expressions poses challenges for manual analysis. To address this, our research team employed transfer learning methods to efficiently process and analyze large-scale text data for depression detection.

OBJECTIVE

This study seeks to address the emotional struggles faced by women with BC, who often grapple with depression but lack accessible mental health support. This study aims to develop a transfer learning-based model to enable timely, non-invasive identification of depression through patients' self-expressed texts, thereby offering a pathway to early intervention.

METHODS

A mixed-methods framework integrated qualitative content analysis with deep learning. We recruited 300 BC patients (inpatients and online users). Depression status was assessed via the Self-rating Depression Scale (SDS), followed by collection and preprocessing of their self-expressed texts. Texts were manually annotated for depression scores/status, and formed a corpus. Content analysis was used to explore linguistic features. A BERT-based model pre-trained on a Weibo depression corpus was fine-tuned using clinical texts. Performance was evaluated via five-fold cross-validation, adversarial testing (word replacement, misspelling, deletion), and ablation studies. Model performance was evaluated using accuracy, precision, recall, and F-score. The model was validated by robustness analysis and ablation studies.

RESULTS

Participants were grouped into depressive (n = 88) and non-depressive (n = 212) cohorts, while financial burden (P = 0.025) and advanced cancer stage (P = 0.038) correlated with depression. Content analysis revealed significant differences in negative life attitudes (P < 0.05). The transfer learning model achieved 86.67% accuracy (F-score = 0.79). The model demonstrated robustness to semantic noise but required spelling correction for clinical deployment.

CONCLUSION

This study established a culturally adapted detection framework. By combining social media pre-training and clinical fine-tuning, the model enables scalable, non-invasive depression screening, bridging cultural barriers to emotional disclosure. Future work should expand demographic diversity and integrate multimodal data for enhanced clinical utility.

摘要

背景

社交网络已成为乳腺癌(BC)患者分享他们在现实生活中可能避免表达的深刻个人情感的重要空间。然而,这些文本表达的无结构和海量性质给人工分析带来了挑战。为解决这一问题,我们的研究团队采用迁移学习方法来有效处理和分析大规模文本数据以进行抑郁检测。

目的

本研究旨在解决BC女性所面临的情感困扰,她们常常与抑郁症作斗争但缺乏可及的心理健康支持。本研究旨在开发一种基于迁移学习的模型,通过患者的自我表达文本实现对抑郁症的及时、非侵入性识别,从而提供早期干预途径。

方法

采用混合方法框架,将定性内容分析与深度学习相结合。我们招募了300名BC患者(住院患者和在线用户)。通过自评抑郁量表(SDS)评估抑郁状态,随后收集并预处理他们的自我表达文本。对文本进行抑郁评分/状态的人工标注,形成语料库。使用内容分析来探索语言特征。在微博抑郁语料库上预训练的基于BERT的模型使用临床文本进行微调。通过五折交叉验证、对抗测试(单词替换、拼写错误、删除)和消融研究来评估性能。使用准确率、精确率、召回率和F分数来评估模型性能。通过稳健性分析和消融研究对模型进行验证。

结果

参与者被分为抑郁组(n = 88)和非抑郁组(n = 212),而经济负担(P = 0.025)和癌症晚期(P = 0.038)与抑郁相关。内容分析显示消极生活态度存在显著差异(P < 0.05)。迁移学习模型的准确率达到86.67%(F分数 = 0.79)。该模型对语义噪声具有稳健性,但临床部署时需要进行拼写校正。

结论

本研究建立了一个适应文化的检测框架。通过结合社交媒体预训练和临床微调,该模型能够进行可扩展的、非侵入性的抑郁筛查,跨越情感披露的文化障碍。未来的工作应扩大人口统计学多样性并整合多模态数据以提高临床效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4165/12341355/604c6854e2ac/12885_2025_14650_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验