Zhang Dong, Shi Minwei, Huang Ding, Yang Yiquan, Du Wei, Wu Shuhe, Bao Guzhi, Zhang Weiping
Opt Express. 2025 Feb 10;33(3):5253-5261. doi: 10.1364/OE.545812.
Rydberg atoms have demonstrated exceptional capabilities in the precise sensing microwave (MW) fields. Previous studies on Rydberg atom-based electrometers (RAEs) have predominantly focused on absorption measurements. Recently, phase-sensitive RAEs employing Mach-Zehnder interferometer (MZI) have been demonstrated, though their performance remains constrained by the standard quantum limit (SQL). In this study, we combine RAEs with advanced quantum interferometrics to enhance MW field sensing. Within the framework of electromagnetically induced transparency (EIT) and Autler-Townes (AT) splitting, the noise of our enhanced electrometer is suppressed below the photon shot noise (PSN) in measuring light dispersion through microwave-dressed atoms, when utilizing phase squeezed states. In our theory, the optimal sensitivity of the MW field can reach 1.36 × 10V/m/Hz with a dressed MW field strength of 2.4 × 10V/m within a balanced SU(1,1) interferometer.
里德堡原子在精确探测微波(MW)场方面展现出了卓越的能力。此前关于基于里德堡原子的静电计(RAEs)的研究主要集中在吸收测量上。最近,已经展示了采用马赫 - 曾德尔干涉仪(MZI)的相敏RAEs,不过它们的性能仍然受到标准量子极限(SQL)的限制。在本研究中,我们将RAEs与先进的量子干涉测量技术相结合,以增强MW场传感。在电磁诱导透明(EIT)和奥特勒 - 汤斯(AT)分裂的框架内,当利用相位压缩态时,我们增强型静电计在通过微波修饰原子测量光色散时的噪声被抑制到低于光子散粒噪声(PSN)。在我们的理论中,在平衡的SU(1,1)干涉仪中,对于强度为2.4×10V/m的修饰MW场,MW场的最佳灵敏度可达1.36×10V/m/Hz。