Suppr超能文献

用动力学数据增强基因组规模代谢模型:解决……中的生长和苹果酸生产权衡问题

Enhancing genome-scale metabolic models with kinetic data: resolving growth and citramalate production trade-offs in .

作者信息

Lázaro Jorge, Wongprommoon Arin, Júlvez Jorge, Oliver Stephen G

机构信息

Department of Computer Science and Systems Engineering, University of Zaragoza, Zaragoza, 50018, Spain.

Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom.

出版信息

Bioinform Adv. 2025 Jul 12;5(1):vbaf166. doi: 10.1093/bioadv/vbaf166. eCollection 2025.

Abstract

SUMMARY

Metabolic models are valuable tools for analyzing and predicting cellular features such as growth, gene essentiality, and product formation. Among the various types of metabolic models, two prominent categories are constraint-based models and kinetic models. Constraint-based models typically represent a large subset of an organism's metabolic reactions and incorporate reaction stoichiometry, gene regulation, and constant flux bounds. However, their analyses are restricted to steady-state conditions, making it difficult to optimize competing objective functions. In contrast, kinetic models offer detailed kinetic information but are limited to a smaller subset of metabolic reactions, providing precise predictions for only a fraction of an organism's metabolism. To address these limitations, we proposed a hybrid approach that integrates these modeling frameworks by redefining the flux bounds in genome-scale constraint-based models using kinetic data. We applied this method to the constraint-based model of , examining both its wild-type form and a genetically modified strain engineered for citramalate production. Our results demonstrate that the enriched model achieves more realistic reaction flux boundaries. Furthermore, by fixing the growth rate to a value derived from kinetic information, we resolved a flux bifurcation between growth and citramalate production in the modified strain, enabling accurate predictions of citramalate production rates.

AVAILABILITY AND IMPLEMENTATION

The Python code generated for this work is available at: https://github.com/jlazaroibanezz/citrabounds.

摘要

摘要

代谢模型是分析和预测细胞特征(如生长、基因必需性和产物形成)的宝贵工具。在各种类型的代谢模型中,两个突出的类别是基于约束的模型和动力学模型。基于约束的模型通常代表生物体代谢反应的很大一部分,并纳入反应化学计量、基因调控和恒定通量边界。然而,它们的分析仅限于稳态条件,这使得优化竞争目标函数变得困难。相比之下,动力学模型提供详细的动力学信息,但仅限于代谢反应的较小子集,仅对生物体代谢的一小部分提供精确预测。为了解决这些局限性,我们提出了一种混合方法,通过使用动力学数据重新定义基因组规模基于约束的模型中的通量边界来整合这些建模框架。我们将此方法应用于 的基于约束的模型,检查其野生型形式和为生产柠苹酸而设计的基因改造菌株。我们的结果表明,富集模型实现了更现实的反应通量边界。此外,通过将生长速率固定为从动力学信息得出的值,我们解决了改造菌株中生长和柠苹酸生产之间的通量分歧,从而能够准确预测柠苹酸生产率。

可用性和实现方式

为本工作生成的Python代码可在以下网址获取:https://github.com/jlazaroibanezz/citrabounds

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21dc/12341681/d10ccb060ce1/vbaf166f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验