Policastro Valeria, Righelli Dario, Cutillo Luisa, Carissimo Annamaria
Department of Political Science, University of Naples Federico II, 80133 Naples, Italy.
Istituto per le Applicazioni del Calcolo "Mauro Picone", Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy.
Bioinform Adv. 2025 Aug 6;5(1):vbaf184. doi: 10.1093/bioadv/vbaf184. eCollection 2025.
The rapid expansion of single-cell RNA sequencing (scRNA-seq) technologies has increased the need for robust and scalable clustering evaluation methods. To address these challenges, we developed robin2, an optimized version of our R package robin. It introduces enhanced computational efficiency, support for high-dimensional datasets, and harmonious integration with R's base functionalities for robust network analysis.
robin2 offers improved functionality for clustering stability validation and enables systematic evaluation of community detection algorithms across various resolutions and pipelines. The application to Tabula Muris and PBMC scRNA-seq datasets confirmed its ability to identify biologically meaningful cell subpopulations with high statistical significance. The new version reduces computational time by 9-fold on large-scale datasets using parallel processing.
The robin2 package is freely available on CRAN at https://CRAN.R-project.org/package=robin. Comprehensive documentation and a detailed analysis vignette are available on GitHub at https://drighelli.github.io/scrobinv2/index.html.
单细胞RNA测序(scRNA-seq)技术的迅速发展增加了对强大且可扩展的聚类评估方法的需求。为应对这些挑战,我们开发了robin2,它是我们R包robin的优化版本。它提高了计算效率,支持高维数据集,并与R的基础功能和谐集成以进行强大的网络分析。
robin2为聚类稳定性验证提供了改进的功能,并能够在各种分辨率和流程下对社区检测算法进行系统评估。应用于Tabula Muris和PBMC scRNA-seq数据集证实了它能够以高统计显著性识别具有生物学意义的细胞亚群。新版本在大规模数据集上使用并行处理将计算时间减少了9倍。
robin2包可在CRAN上免费获取,网址为https://CRAN.R-project.org/package=robin。全面的文档和详细的分析示例可在GitHub上获取,网址为https://drighelli.github.io/scrobinv2/index.html。