Toriola Mubaraq A, Timlin Emma, Bulbule Sarojini, Reyes Amy, Adedeji Omolola Mary, Gottschalk C Gunnar, Barua Animesh, Arnold Leggy A, Roy Avik
Res Sq. 2025 Aug 6:rs.3.rs-7189456. doi: 10.21203/rs.3.rs-7189456/v1.
M1 macrophage activation is crucial in chronic inflammatory diseases, yet its molecular mechanism is unclear. Our study shows that hemizygous deletion of early autophagy gene (Tg ATG13) disrupts cellular autophagy, hinders mitochondrial oxidative metabolism, increases reactive oxygen species (ROS) in splenic macrophages, leading to its M1 polarization. Reduced macroautophagy markers WDFY3 and LC3, flow-cytometric analysis of M1/M2 markers (CD40, CD86, CD115, CD163, and CD206), deficit of oxygen metabolism evaluated by ROS-sensor dye DCFDA, and seahorse oxygen consumption studie ealed that atg13 gene ablation impairs mitochondrial function triggering M1 polarization. Additionally, redox imbalance may impair Sirtuin-1 activity via nitrosylation, increasing the level of acetylated p65 in macrophages contributing to the inflammatory response in M1Mφ. Additionally, the ablation of the atg13 gene resulted in the increased infiltration of M1Mφ in muscle vasculature, deterioration of myelin integrity in nerve bundles, and a reduction in muscle strength following treadmill exercise. These findings underscore the significance of ATG13 in post-exertional malaise (PEM).
M1巨噬细胞的激活在慢性炎症性疾病中至关重要,但其分子机制尚不清楚。我们的研究表明,早期自噬基因(Tg ATG13)的半合子缺失会破坏细胞自噬,阻碍线粒体氧化代谢,增加脾脏巨噬细胞中的活性氧(ROS),导致其M1极化。自噬标志物WDFY3和LC3减少,M1/M2标志物(CD40、CD86、CD115、CD163和CD206)的流式细胞术分析,通过ROS传感器染料DCFDA评估的氧代谢缺陷,以及海马体氧消耗研究表明,atg13基因缺失会损害线粒体功能,引发M1极化。此外,氧化还原失衡可能通过亚硝基化损害Sirtuin-1活性,增加巨噬细胞中乙酰化p65的水平,从而促进M1Mφ中的炎症反应。此外,atg13基因的缺失导致M1Mφ在肌肉血管中的浸润增加、神经束中髓鞘完整性的恶化以及跑步机运动后肌肉力量的降低。这些发现强调了ATG13在运动后不适(PEM)中的重要性。