Suppr超能文献

额岛叶网络是愤怒表达和控制个体差异的基础。

A fronto-insular network underlies individual variations in anger expression and control.

作者信息

Grecucci Alessandro, Graci Francesca, Munari Ellyson, Yi Xiaoping, Salvato Gerardo, Messina Irene

机构信息

Department of Psychology and Cognitive Sciences, University of Trento, Trento, Italy.

Center for Medical Sciences, University of Trento, Trento, Italy.

出版信息

Imaging Neurosci (Camb). 2024 Nov 5;2. doi: 10.1162/imag_a_00348. eCollection 2024.

Abstract

Anger can be deconstructed into distinct components: a tendency to outwardlyexpress it (anger-out) and the capability to manage it (anger control). Theseaspects exhibit individual differences that vary across a continuum. Notably,the capacity to express and control anger is of great importance to modulate ourreactions in interpersonal situations. The aim of this study was to test thehypothesis that anger expression and control are negatively correlated and thatboth can be decoded by the same patterns of grey and white matter features of afronto-temporal brain network. To this aim, a data fusion unsupervised machinelearning technique, known as transposed Independent Vector Analysis (tIVA), wasused to decompose the brain into covarying GM-WM networks and thenbackward regression was used to predict both anger expression and control from asample of 212 healthy subjects. Confirming our hypothesis, results showed thatanger control and anger expression are negatively correlated, the moreindividuals control anger, the less they externalize it. At the neural level,individual differences in anger expression and control can be predicted by thesame GM-WM network. As expected, this network included lateral and medialfrontal regions, the insula, temporal regions, and the precuneus. The higher theconcentration of GM-WM in this brain network, the higher the level ofexternalization of anger, and the lower the anger control. These results expandprevious findings regarding the neural bases of anger by showing that individualdifferences in anger control and expression can be predicted by morphometricfeatures.

摘要

愤怒可被解构为不同的组成部分

向外表达愤怒的倾向(愤怒外显)以及管理愤怒的能力(愤怒控制)。这些方面呈现出个体差异,且在一个连续体上有所不同。值得注意的是,表达和控制愤怒的能力对于调节我们在人际情境中的反应非常重要。本研究的目的是检验以下假设:愤怒表达与控制呈负相关,且二者均可通过额颞脑网络的灰质和白质特征的相同模式进行解码。为此,一种称为转置独立向量分析(tIVA)的数据融合无监督机器学习技术被用于将大脑分解为协变的灰质 - 白质网络,然后使用反向回归从212名健康受试者的样本中预测愤怒表达和控制情况。结果证实了我们的假设,表明愤怒控制与愤怒表达呈负相关,个体对愤怒的控制越多,向外表达的就越少。在神经层面,愤怒表达和控制的个体差异可由相同的灰质 - 白质网络预测。正如预期的那样,该网络包括外侧和内侧额叶区域、岛叶、颞叶区域以及楔前叶。这个脑网络中灰质 - 白质的浓度越高,愤怒的外在表现水平越高,愤怒控制水平越低。这些结果通过表明愤怒控制和表达的个体差异可由形态计量学特征预测,扩展了先前关于愤怒神经基础的研究发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19c6/12290868/09c22078c074/imag_a_00348_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验