Suppr超能文献

水体混合控制着开阔海洋高水动力区域的甲烷循环与排放。

Water mass mixing controls methane cycling and emission in highly hydrodynamic regions of the open ocean.

作者信息

Li Xiao-Jun, Wang Jinyan, Wang Hao-Nan, Li Shuang, Zhou Zhen, Chen Zhao-Hui, Liu Jiarui, Zhang Gui-Ling, Zhang Hong-Hai, Yang Gui-Peng, Todd Jonathan D, Zhuang Guang-Chao

机构信息

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100, China.

Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266100, China.

出版信息

ISME Commun. 2025 Jul 10;5(1):ycaf114. doi: 10.1093/ismeco/ycaf114. eCollection 2025 Jan.

Abstract

Ocean circulations and water mass exchange can exert significant influences on seawater biogeochemistry, microbial communities, and carbon cycling in marine systems. However, the detailed mechanisms of the impacts of physical processes in the open ocean on the cycle of greenhouse gases, particularly methane, remain poorly understood. In this study, we integrated high-resolution underway observations, experimental incubations, radioisotope labelling, and molecular analysis to constrain the controls of methanogenic pathways, methanotrophic activity, and emission fluxes in the highly hydrodynamic Kuroshio and Oyashio Extension (KOE) region of the Northwest Pacific. The mixing of high-temperature, nutrient-rich Kuroshio waters with methane-rich Oyashio currents significantly affected not only methane abundance, but also methane production pathways and oxidation rates. Water mass mixing caused changes in the dominance of phytoplankton communities to , with less production of the methane precursor dimethylsulphoniopropionate, thus reducing dimethylsulphoniopropionate-dependent methanogenesis. The alteration of nutrient levels due to mixing of Kuroshio and Oyashio at KOE is also likely to affect microbial utilization of dissolved organic phosphorus, thus influencing methane production from the C-P cleavage of methylphosphonate. Furthermore, the abundances of methanotrophs, such as and , were much higher at the KOE sites than those observed at the Oyashio Extension, which contributed to elevated methane oxidation rates in the mixing region. Microbial oxidation as a biological sink of methane accounted for ~43.7% ± 28.8% of the total methane loss, which reduced methane emissions to the atmosphere. These data highlight the physical controls on biogeochemical methane cycling, indicating that intensive mixing of water masses may regulate methane emissions from the open oceans.

摘要

海洋环流和水体交换对海洋系统中的海水生物地球化学、微生物群落和碳循环有着重大影响。然而,公海中物理过程对温室气体循环,尤其是甲烷循环的详细影响机制仍知之甚少。在本研究中,我们整合了高分辨率的航次观测、实验培养、放射性同位素标记和分子分析,以确定西北太平洋高水动力的黑潮和亲潮延伸区(KOE)中甲烷生成途径、甲烷氧化活性和排放通量的控制因素。高温、富营养的黑潮水与富含甲烷的亲潮水流混合,不仅显著影响了甲烷丰度,还影响了甲烷生成途径和氧化速率。水体混合导致浮游植物群落优势度发生变化,甲烷前体二甲基磺基丙酸酯的产量减少,从而降低了依赖二甲基磺基丙酸酯的甲烷生成。黑潮和亲潮在KOE处混合导致的营养水平变化也可能影响微生物对溶解有机磷的利用,从而影响甲基膦酸酯C-P裂解产生甲烷的过程。此外,KOE站点的甲烷氧化菌(如 和 )丰度远高于亲潮延伸区观测到的丰度,这导致混合区域甲烷氧化速率升高。作为甲烷生物汇的微生物氧化占甲烷总损失的约43.7%±28.8%,减少了向大气中的甲烷排放。这些数据突出了对生物地球化学甲烷循环的物理控制,表明水体的强烈混合可能调节公海的甲烷排放。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验