Suppr超能文献

变形菌门甲烷营养菌 OB3b 响应磷酸盐限制重塑膜脂。

The Proteobacterial Methanotroph OB3b Remodels Membrane Lipids in Response to Phosphate Limitation.

机构信息

School of Life Sciences, University of Warwickgrid.7372.1, Coventry, UK.

School of Biological Sciences, Queen's University Belfast, Belfast, UK.

出版信息

mBio. 2022 Jun 28;13(3):e0024722. doi: 10.1128/mbio.00247-22. Epub 2022 May 16.

Abstract

Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase in recent decades. Aerobic methanotrophs, bacteria that use methane as the sole carbon source, are an important biological sink for methane, and they are widely distributed in the natural environment. However, relatively little is known on how methanotroph activity is regulated by nutrients, particularly phosphorus (P). P is the principal nutrient constraining plant and microbial productivity in many ecosystems, ranging from agricultural land to the open ocean. Using a model methanotrophic bacterium, Methylosinus trichosporium OB3b, we demonstrate here that this bacterium can produce P-free glycolipids to replace membrane phospholipids in response to P limitation. The formation of the glycolipid monoglucuronic acid diacylglycerol requires genes since the mutant is unable to produce this glycolipid. This -mediated lipid remodeling pathway appears to be important for OB3b to cope with P stress, and the mutant grew significantly slower under P limitation. Interestingly, comparative genomics analysis shows that the ability to perform lipid remodeling appears to be a conserved trait in proteobacterial methanotrophs; indeed, is found in all proteobacterial methanotroph genomes, and transcripts from methanotrophs are readily detectable in metatranscriptomics data sets. Together, our study provides new insights into the adaptation to P limitation in this ecologically important group of bacteria. Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase steadily in recent decades. In the natural environment, bacteria known as methanotrophs help mitigate methane emissions at no cost to human beings. However, relatively little is known regarding how methane oxidation activity in methanotrophs is regulated by soil nutrients, particularly phosphorus. Here, we show that methanotrophs can modify their membrane in response to phosphorus limitation and that the ability to change membrane lipids is important for methanotroph activity. Genome and metatranscriptome analyses suggest that such an adaptation strategy appears to be strictly conserved in all proteobacterial methanotrophs and is used by these bacteria in the natural environment. Together, our study provides a plausible molecular mechanism for better understanding the role of phosphorus on methane oxidation in the natural environment.

摘要

甲烷是大气中一种强效的温室气体,其浓度在最近几十年持续增加。好氧甲烷氧化菌是一类利用甲烷作为唯一碳源的细菌,它们是甲烷的重要生物汇,广泛分布于自然环境中。然而,人们对甲烷氧化菌活性如何受到营养物质(特别是磷)的调节知之甚少。磷是许多生态系统(从农田到开阔海洋)中限制植物和微生物生产力的主要营养物质。本研究使用模式甲烷氧化菌 Methylosinus trichosporium OB3b 证明,该细菌可以在磷限制条件下产生无磷糖脂以替代膜磷脂。形成糖脂单葡萄糖二酸甘油二酯需要 基因,因为 突变体无法产生这种糖脂。这种由 介导的脂质重塑途径对于 OB3b 应对磷胁迫似乎很重要,并且突变体在磷限制下的生长速度明显较慢。有趣的是,比较基因组学分析表明,进行脂质重塑的能力似乎是变形杆菌甲烷氧化菌的一种保守特征;事实上,在所有变形杆菌甲烷氧化菌基因组中都发现了 ,并且在宏转录组学数据集可以检测到来自甲烷氧化菌的 转录本。总的来说,我们的研究为理解这组在生态上重要的细菌对磷限制的适应提供了新的见解。

甲烷是大气中一种强效的温室气体,其浓度在最近几十年持续增加。在自然环境中,被称为甲烷氧化菌的细菌以对人类无任何成本的方式帮助减轻甲烷排放。然而,人们对土壤养分(特别是磷)如何调节甲烷氧化菌中的甲烷氧化活性知之甚少。在这里,我们表明,甲烷氧化菌可以响应磷限制来改变其细胞膜,并且改变膜脂的能力对于甲烷氧化菌的活性很重要。基因组和宏转录组分析表明,这种适应策略似乎在所有的变形杆菌甲烷氧化菌中都是严格保守的,并且这些细菌在自然环境中使用这种策略。总的来说,我们的研究为更好地理解磷对自然环境中甲烷氧化的作用提供了一个合理的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb2a/9239053/7a65fabf9c97/mbio.00247-22-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验