Krzyzak Artur Tadeusz, Lasek Julia, Slowik Agnieszka
AGH University of Krakow, Kraków, Poland.
The LaTiS NMR - Tomography and Spectroscopy Laboratory, Kraków, Poland.
Front Neurol. 2025 Jul 28;16:1618582. doi: 10.3389/fneur.2025.1618582. eCollection 2025.
This study investigates whether a multi-shell diffusion tensor imaging (DTI) protocol and its subsets can reliably distinguish healthy controls (HC) from patients with multiple sclerosis (MS) presenting with low Expanded Disability Status Scale (EDSS) scores and mild MRI findings.
To enhance accuracy, spatial systematic errors in diffusion measurements were corrected using the B-matrix Spatial Distribution method (BSD-DTI). We examined the discriminative potential of fractional anisotropy (FA) and mean diffusivity (MD) across three broad brain regions: whole brain (WB), white matter (WM), and gray matter (GM), using both the full protocol and its subsets. Additionally, we employed a more detailed classification strategy based on segmentation into 95 regions of interest (ROIs), analyzing FA, MD, axial diffusivity (AD), and radial diffusivity (RD) under a stringent statistical criterion.
While the protocol and each subset showed a comparable ability to differentiate between HC and MS groups, substantial variability in metric values across protocols highlights the limited utility of directly comparing DTI metrics between acquisition schemes.
The results emphasize the importance of accounting for spatial systematic errors when selecting optimal protocols for clinical and research applications.
本研究调查了一种多壳层扩散张量成像(DTI)方案及其子集能否可靠地将健康对照者(HC)与扩展残疾状态量表(EDSS)评分较低且MRI表现轻微的多发性硬化症(MS)患者区分开来。
为提高准确性,使用B矩阵空间分布方法(BSD-DTI)校正扩散测量中的空间系统误差。我们使用完整方案及其子集,在三个广泛的脑区:全脑(WB)、白质(WM)和灰质(GM)中,研究了分数各向异性(FA)和平均扩散率(MD)的鉴别潜力。此外,我们采用了一种更详细的分类策略,将其分割为95个感兴趣区域(ROI),并在严格的统计标准下分析FA、MD、轴向扩散率(AD)和径向扩散率(RD)。
虽然该方案及其每个子集在区分HC组和MS组方面表现出相当的能力,但不同方案之间的度量值存在很大差异,这突出了直接比较不同采集方案之间的DTI度量值的有限实用性。
结果强调了在为临床和研究应用选择最佳方案时考虑空间系统误差的重要性。